in Engineering Program (WE@RIT); ME Department Advocate for Engineering Honors Program; and Member of Multidisciplinary Capstone Design Leadership Team. Page 12.670.1© American Society for Engineering Education, 2007 Enhancing Life-Long Learning and Communication Abilities through a Unique Series of Projects in ThermodynamicsAbstractMechanical engineering courses in Thermodynamics typically provide a detailed treatment of thefirst and second laws of thermodynamics from a classical viewpoint in order to prepare studentsfor subsequent courses and ultimately, engineering practice. Therefore, thermodynamics
project. The results of the project: hardware, software and documentationare presented to the faculty in the form of a senior thesis. In completing their senior thesisprojects, the students get to interact with each other, with vendors and manufacturers of softwareand hardware components and spend a great deal of time on the internet searching forinformation on manufacturer specifications and the best components and vendors. For thecapstone project, the computer engineering students use the science, engineering and generaleducation backgrounds acquired over the four year period in the design and implementation. Thisexperience enhances the ability of the students to work on teams. It is hoped that the assessmentdata when collected and analyzed for
service-learning program enables each student team to maintain along-term relationship with its community partner and to successfully design and deliverproducts that have significant technical complexity and significant community impact. Theprogram is implemented as a track of courses, where a team corresponds to a division or labsection of the course. Each team is large – 8 to 20 students – and vertically integrated –composed of freshmen, sophomores, juniors and seniors. A student may be a member of a teamfor up to four years, registering for 1 to 2 credits each semester. When seniors graduate eachyear, returning students move up a year and new students are added to the team. Many teamshave developed formal training processes for new members
the practice of modern security and safety engineering programs, including the use of information technology and supporting software applications. 7. Apply a global mindset to security and safety issues related to people and assets. 8. Assess the impact of security and safety issues for the operation of corporations and businesses and develop appropriate action plans through detailed engineering analyses and design. 9. Integrate tools and techniques, resources, organizational systems, and decision- making processes for the successful implementation of security and safety plans.Possess the knowledge necessary to become certified as a safety (CSP) and security professional(CPP) and pass FEMA Certifications
AC 2007-2198: LABORATORY IMPROVEMENT: A STUDENT PROJECT TODEVELOP INITIATIVE AND INNOVATION AS A PERMANENT STATE OFMINDSorin Cioc, University of Toledo Sorin Cioc is an Assistant Professor of Mechanical Engineering in the Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), College of Engineering, University of Toledo. He received a Ph.D. degree in aerospace engineering from the Polytechnic University of Bucharest, Romania, and a Ph.D. degree in mechanical engineering from the University of Toledo. His main research and publishing area is tribology. He is a past recipient of the Wilbur Deutsch Memorial Award for the best paper on the practical aspects of lubrication
design work at the graduate level is minimal. However, it is ourhypothesis that these intensive hands-on types of experience may not be as critical to the types ofnon-traditional students who have significant exposure to engineering in their professionalcareers, such that these students already “know what engineering is”. (By comparison, we feelthat it is unlikely that a fully online program would be optimal for the traditional college-ageundergraduate student who lacks such exposure to engineering; such students would likely needthe benefits, supports, and interactions best provided by the traditional undergraduateexperience.) Obviously this hypothesis warrants detailed assessment and evaluation as the onlineprogram is developed.Specifically
not enough that the standards are published. To have an impact, theymust influence what happens in every K-12 classroom in America.”Technology education shares engineering education’s desire to emphasize open-endedproblem solving and the design process. For example, Standard 8 delineates design stepsvery similar to those introduced to engineering students. In order to recognize theattributes of design, students in grades 9-12 should learn that the design process includes: • defining a problem, • brainstorming, researching and generating ideas, • identifying criteria and specifying constraints, • exploring possibilities, • selecting an approach, • developing a design proposal, • making a model or prototype, • testing and
-Americans. In2004, Caucasian men composed of 69.3% of the science and engineering degrees whereasAfrican-American men accounted for 5.9%.1 African-American men are still disproportionatelyrepresented in the engineering and science fields. In order to address this need, Virginia Tech’sCollege of Engineering has developed The VT PACT, a retention program for first-year African-American men in engineering. The purpose of this paper is two-fold: 1) to discuss how the booktitled, The Pact, written by Drs. Sampson Davis, George Jenkins, and Rameck Hunt was used asa framework to develop the The VT PACT and 2) to discuss the impact of The VT PACT for the2005-2006 academic year and the 2006 fall semester.2 The researchers provide brief backgroundon
at least 2 possible designs and make a recommendation in their final report.This approach forces the students to think about the significance of their results, rather thanblindly crunching numbers.It is essential that the instructor balance the student need (or desire) for explicit instructions withthe learning which comes from struggling with: • Choosing the best approach/theory to tackle the problem; • Making appropriate assumptions; and • Evaluating (often conflicting) results.It also should be emphasized that the link between the theories and concepts presented in classand the real world projects is not obvious to the students! Some students fail to see anyconnection between the homework, exams & the projects even when
Page 12.200.2 1 This paper is extracted from the ASCE report Development of Civil Engineering Curricula Supporting theBody of Knowledge for Professional Practice, 2006.to provide thoughts and strategies for institutions when they implement their own uniquecompliant programs.FUNDAMENTAL ASSUMPTIONS As the committee conducted its tasks, several assumptions were made about the nature ofcivil engineering curricula to focus the process and to provide boundaries within which thecommittee could have an impact on the overall development of a civil engineer. Theseassumptions also provided the philosophy by which the curricula would be developed. Discussedbelow are the primary assumptions made by the committee and the rationale for
energy to produce or manufacture. In thismodule students will be introduced to environmental impact measures, industrialstandards and guidelines, and decision-making strategies that can be used for materialselection.Module 4: Process design and improvement - Another common challenge faced inindustry is to reduce the environmental impact of an existing manufacturing process.Students will be introduced to methods of identifying the most damaging part of theprocess flow through material and energy balances. Common practices for reducingenergy consumption and waste will be discussed. In addition, strategies for productpackaging and delivery will be presented.Module 5: End-of-use strategies - This module begins with a lecture on Green Chemistry.It
, Gandolfo was askedby the American States Organization to serve as Technical Consultant of the PermanentSecretariat of the Pan-American Highway Congresses.In his private practice, he has participated in several studies, designs, and projects for highwaysand urban roads, as well as the area of road safety. These studies included a document that is Page 12.1464.10very important to the economic development of Peru titled, “The Integral Study of HighwayTraffic in Peru in the year 2000.” Gandolfo coordinated the management of consulting servicesfor the Ilo – Desaguadero Highway, which serves as the international connection between Peruand Bolivia. The
12.211.1© American Society for Engineering Education, 2007 An Industrial Engineering Body of Knowledge?AbstractCivil engineers have a defined Body of Knowledge. Mechanical engineering currently has aBody of Knowledge task force focused on the future of mechanical engineering education. Canwe agree on an industrial engineering Body of Knowledge, or at least agree on outcomes thatdistinguish industrial engineering (IE) from other engineering disciplines? The ABET programcriteria for industrial engineering state only that “The program must demonstrate that graduates have the ability to design, develop, implement, and improve integrated systems that include people, materials, information, equipment, and energy. The program
practice of the techniques used in aircraft manufacturing and fabrication. They may include, but are not limited to, hands-on practice in working with aircraft materials and systems, seminar topics, field trips to aircraft designers, and reading aircraft plans and publications necessary for piloted flight. The primary purpose of the course is to compliment the capstone aircraft design sequence and give selected students significant exposure to aircraft fabrication techniques. By its nature this requires a team orientation, exposure to most if not all engineering disciplines as Page 12.918.3Proceedings of the 2005 American Society for Engineering
Laboratory at the University of Massachusetts Lowell. He is a Registered Professional Engineer with a BS, MS and Doctorate in Mechanical Engineering and a member of ASEE, ASME and SEM. Page 12.1411.1© American Society for Engineering Education, 2007 The Dynamics Summer School – A Unique Educational ProgramThe Los Alamos Dynamics Summer School (LADSS), which is funded by Los Alamos NationalLaboratory (LANL), is a unique nine-week program that was initiated in 2000 to focus a selectgroup of upper level undergraduate students and first year graduate students on the broad fieldsof engineering dynamics with specific
as part of a university and high school collaborative program. Thismagnet program focused on the impact of the high school courses which were intended to teachengineering principles to help students better understand the design process. We were alsointerested in creating a rubric to help future teachers who want to introduce engineering to theirstudents as part of their educational curriculum. Page 12.902.3Theoretical Background of this ResearchSocio-constructivist theory provided the framework for this research. Sociocultural theoryoriginated in the work of Vygotsky and his Soviet colleagues in the early decades of thetwentieth century
provides each student with the time and mentoring opportunities required to learn and Page 12.1438.4 practice different roles on the team, from trainee to design engineer to team leader. • Variable Credit Hours: An EPICS student earns one credit per semester as a freshman or sophomore. As juniors or seniors, they earn 1 or 2 credits per semester, with the choice being made by the student each semester. The doubling of credits available to juniors and seniors parallels their growing technical capabilities and organizational responsibilities. How the academic credit counts towards a student’s graduation requirements
appropriateinfrastructure in place, and ensuring that faculty receive formal training in distance educationmethods and technology 20.Considerable research has focused on assessing distance education practices, and a number ofpublications have examined this topic in terms of what faculty can do to improve the educationalexperience for students: “What determines the success of distance teaching is the extent to whichthe institution and the individual instructor are able to provide the appropriate opportunity for,and quality of, dialogue between teacher and learner, as well as appropriately structured learningmaterials” 15, p. 6. However, tension can also exist between faculty and instructional designpersonnel. Whereas the ideal relationship would be one of
his M.S and Ph.D. from the University of Michigan in 1975 and 1980 respectively. His teaching responsibilities are in the environmental engineering area. He has conducted research on solid waste, surface water quality, teaching methodology, and curriculum development. He serves as a consultant on potable water system design, stormwater management, and on-site wastewater treatment. Page 12.213.1© American Society for Engineering Education, 2007 An Innovative Infrastructure Curriculum for 21st Century Civil EngineeringAbstractA new curriculum has been developed by the
the Practice of Chemical Engineering in the Chemical & Biochemical Engineering Department at UMBC, where she teaches, the Introduction to Engineering Design course, among other Chemical Engineering courses. Her research interests include engineering education and outreach. She is actively involved in developing curriculum to introduce engineering concepts to K-12 students.Greg Russ, University of Maryland-Baltimore County Gregory Russ graduated Magna Cum Laude in 2006 with a BS degree in Chemical Engineering from the University of Maryland, Baltimore County. He is currently pursuing a MS degree in Chemical Engineering with a focus on Engineering Education, also from UMBC. He is a member
; (2) Transnational mobility for engineering students, researchers, and professionals needs to become a priority; (3) Global engineering excellence depends critically on a mutual commitment to partnerships, especially those that link engineering education to professional practice; and (4) Research on engineering in a global context is urgently needed.These recommendations suggest that a very strong collaboration should exist among theacademia, the industry and the government to facilitate the best practices to educate world-classengineers2.The European Union has defined and facilitated multi-national educational experiencesimportant to capacity development in their area, but this has not been done for the WesternHemisphere
curriculums are fundamentally designed to build upon skills gained from previouscourses. Student success in those courses basically depends on their academic fortitude, selfconfidence, and effective teaching. This approach will concentrate on the latter by suggesting anapproach that deliberately integrates IT into the classroom which negates impacts that stiflesstudent learning.We propose a four step IT integration framework as a guide for all IT into course work. Thisapproach provides not only a deterministic model for adding technology to courses but alsoincludes an assessment vehicle that measures the effect of technology on students’ confidenceand their grades. We will use a required IT course, IT305 – Theory and Practice of IT Systems,as an
Pedagogy for Engineering Ethics InstructionAbstractGE 301- Principles of Engineering Practice is a required course for Valparaiso UniversityCollege of Engineering students. The course was revamped in Spring 2005 to betteremphasize engineering aspects of ethics, economics, sustainability, and sociopoliticalissues.As part of teaching ethics, students have traditionally been assigned an individuallywritten ethics paper. Since students were allowed to select their own cases, it was notuncommon for some students to select the same case. There was also limited discussionbetween students regarding the cases they chose, or how they would judge the behaviorsof engineers in these cases.Starting with the Spring 2005 Semester, ethics instruction increased
” Engineering &Manufacturing New Graduate Professional Development Rotation Program. Within thatprogram, NG is extremely proud that the company female population over the period of time is30 % and the total of minorities and females approaches 50%. In addition NG has a growingNew Graduate Leadership Training Program run out of our Baltimore facility that has also beenrecognized as “Best Manufacturing Practices” where 52% of the almost 250 participants in thelast three years are women and minorities.Northrop Grumman is the second largest employer for Engineers graduating from the NC StateUniversity College of Engineering over the past four years, having hired in excess of 75 newgraduate engineers for the Baltimore location alone. NG has a very
Engineering. One of thegrants funded entrepreneurial multi-university wireless senior design projects, while the othersupported a series of Electrical and Computer Engineering Department senior design teams withentrepreneurial commitment. Additionally, Florida Tech has been an active partner of the NSF-funded Partnership for Innovation - Center for Entrepreneurship and TechnologyCommercialization (CENTECOM) along with UCF, USF and Florida A&M University. Theresponse to these grants has been extremely positive, with 7 of 13 entrepreneurial senior designteams in 2005 intending to launch businesses around their senior projects. Additionally, therewere twelve graduate E-teams presenting their business ideas at the EngineeringEntrepreneurship Business
therapeuticapplications, which are frequently referred to as BioMEMS or Biomedical Microsystems.Biomedical Microsystems research includes biological, biomedical, biochemical, andpharmaceutical analysis and synthesis using MEMS-based microsensors and microsystems. Atthe University of Cincinnati the state-of-the-art emerging MEMS and BioMEMS research wasintegrated within the graduate and undergraduate electrical engineering curricula. For the pastthree years a novel course Introduction to Biomedical Microsystems was offered. In these firstthree course offerings, enrollment has spread beyond the initial target audience of theDepartment of Electrical and Computer Engineering, and now includes students from mechanicalengineering, environmental engineering, computer
TheEngineer of 2020. Professionals who graduate with engineering degrees of any discipline maydirectly use their undergraduate technical knowledge as well as use, in more general terms, theirengineering problem solving approaches in many fields. Today’s engineers work in traditionalas well as non-traditional fields perceived completely different from any design theory studied inthe classroom. Many industries, from mainstream business and consulting to design andmanufacturing, desire to hire engineers for their learned way of thinking and ability to applyavailable resources to improve quality of product, service and thus human life. A well-roundedengineer, with effective technical knowledge and analytical skills as well as effective soft skills
classroom. It also seems to run counter to a number of givens in their lives especially sinceteacher career advancement seems to dictate that they pursue one or more masters degrees withthe corresponding homework. Finally, the idea of conducting a course with no fixed finalperformance expectations might be just a bit “around the bend”. Naturally, these are all genuineconcerns and this course set does not blatantly ignore the good practices expected of any course.However, it is one thing for an in-service teacher to succeed when writing papers and/or doingliterature research in a method course or principles of school administration course and quiteanother for a teacher with no or at best absolute minimal previous exposure to engineeringscience and
the case, there isa difference of opinion concerning exactly what constitutes this set of TQM best practices.Goetsch and Davis5 (2003) consider TQM best practices to be customer service, quality control,new product development, innovation, planning, continual improvement, teamwork, andtraining. A different approach to determine the best practices and critical success factors forTQM also involved using existing data. An extensive study of current literature listed as bestpractices “top management commitment and leadership, customer focus, information andanalysis, training, supplier management, strategic planning, employee involvement, humanresource management, process management, teamwork, product and service design, processcontrol
, Fiber Optic Communications, Technology and Society, and Project Management. He also advises students on their senior design projects. He is author of “The Telecommunications Fact Book, 2E” and co-author of “Technology and Society: Crossroads to the 21st Century,” “Technology and Society: A Bridge to the 21st Century,” and “Technology and Society: Issues for the 21st Century and Beyond.” He is a member of ASEE, and a senior member of IEEE.Amin Karim, DeVry University Amin Karim is the Director of Technology Programs at DeVry University. In this capacity, he is responsible for leading DeVry’s undergraduate and graduate programs in engineering technology, information systems, telecommunications