Laboratory Edith Gummer is the Director of the Classroom-Focused Research and Evaluation Program for the Center for Classroom Teaching and Learning at the Northwest Regional Educational Laboratory. She coordinated the structure of the research design and the data collection and analysis processes of the project. She has been faculty in science and mathematics education quantitative and qualitative research design courses at the doctoral level. She has been involved in the development of innovative mathematics curricular activities and formative assessment in mathematics problem solving.Philip Harding, Oregon State University Philip Harding holds the Linus Pauling Chair in the School of
2 2 1 1 -Finally, in 2006, the department was awarded the NSF Targeted Infusion Project to establish abioengineering concentration within the department. This grant provided the last integral piece inproviding the department of funding it needed in order to move forward. One component of thegrant focused on purchase of laboratory equipment and re-design of undergraduate chemicalengineering lab 1.Curriculum DevelopmentThe current Chemical Engineering curriculum is designed to prepare engineers who are wellqualified to design and operate chemical processes. The undergraduate baccalaureate degreerequires that students complete 138 hours, of which 20 hours of chemistry and 42 hours ofchemical engineering specific courses
production of ethanol has doubled,while biodiesel production has more than tripled. Media attention highlighting the current highprice and limited supply of crude oil and continually escalating environmental concerns with theuse of petroleum fuels has increased interest in and awareness of renewable energy and biofuels,especially among students. Since chemical engineers play a vital role in the advancement of thebiorefining industry, biofuel production is an excellent vehicle to make chemical engineering“come alive” for students and stimulate interest in the field as both a discipline and a profession.The Department of Chemical and Materials Engineering at the University of Alabama inHuntsville has developed a hands-on laboratory activity allowing
laboratory, training the students about process safety in aninherently low-risk environment. The approach is based on more than ten years of industrialprocess hazards analysis experience, which includes assessing for process-related hazards andreducing process-related risks. Before the students began the experimental phase of theirlaboratory project, they documented that they understood the potential hazardous events relatedto their project. The students completed a series of Project Risk Analysis (PRA) check sheetswhich listed both the hazards addressed in the OSHA Process Safety Management standard (i.e.,fire, explosion, and toxic release) as well as other area and personnel safety-related hazards (e.g.,noise, utilities, etc.). Then the students
AC 2008-567: INTERVIEW SKILLS TRAINING IN THE CHEMICALENGINEERING LABORATORY: TRANSPORTING A PILOT PROJECTJulie Sharp, Vanderbilt Julie E. Sharp, Associate Professor of the Practice of Technical Communication at Vanderbilt University Engineering School, co-ordinates and teaches technical communication courses for all engineering majors and co-teaches combined chemical engineering lab/technical communication courses. In addition to publishing papers on communication and engineering education topics, she has published a book chapter and numerous papers in refereed journals and conference proceedings on learning styles. She won the ASEE Southeastern Division's 2004 Thomas C. Evans
AC 2008-2602: DRAG-AND-DROP GRAPHICAL USER INTERFACE FORPROCESS CONTROL EDUCATIONRuben Morales-Menendez, Tecnologico de MonterreyTomas Lopez , Tecnologico de MonterreyRicardo Ramirez Medoza, Institute Tecnologico De MonterreyLuis E Garza, Tecnologico de Monterrey Page 13.451.1© American Society for Engineering Education, 2008 Drag-and-Drop Graphical User Interface for Process Control EducationAbstractOne of the difficulties in process control education consists of providing a theoretical foundationmaintaining the practicality. Experimental laboratories represent a powerful option to avoid thisgap. An experimental laboratory must
context for virtual science, engineering and technology investigations. He also proposed and implemented the pioneering concept of integrated adjustable virtual laboratories. To facilitate these methodologies for academic education, corporate and military training, his company developed new ground-breaking e-learning solutions, as well as relevant assessment and authoring tools. Dr. Cherner holds an MS in Experimental Physics, and Ph.D. in Physics and Materials Science. He published over 70 papers in national and international journals and made dozens presentations at various national and international conferences and workshops. Dr. Cherner has served as a Principal Investigator for several
on bioprocess engineering.The protein production project was developed and implemented during the fall 2006 semesterand repeated during the fall 2007 semester. A key element of the protein production project wasthe competition between student groups. Group performance was rated using a productionrubric, and the team with the highest score was guaranteed an “A” on the project. The rubricincluded equipment rental costs and production bonuses for producing large quantities of proteinof high purity. The equipment rental costs were carefully determined to encourage continuedstudent experimentation in the laboratory. The competitive nature of the project capturesstudents driven by achievement or instrumental types of motivation, which are not
before. It’s time to come up with some new ideas to revolutionize that corecourse in ways that will amaze students and maximize learning, right? Or perhaps themaxim about “an hour in the library is worth a month in the laboratory” might bemeaningful in the context of teaching. This paper summarizes the authors’ selection ofthe most effective, innovative approaches reported recently in the literature or discussedat previous conferences for lower-division core courses in chemical engineering, aspresented at the 2007 ASEE Summer School for Chemical Engineering Faculty. Thechallenges associated with particular courses and solutions successfully applied toaddress those challenges will also be described. Courses covered in this paper
engineeringdepartment to introduce colloid and surface science as a focus for graduate study. The result wasa new interdisciplinary graduate program titled “Colloids, Polymers and Surfaces”, beginningwith lecture courses in 1972 and hands-on laboratory training added in 1974. On the academicside it was a cooperative effort under the direction of Professor D. Fennell Evans, employingpersonnel and physical resources of both the chemistry and chemical engineering departments.Input of R&D supervisors from eight local industries came from the Advisory Board, who Page 13.1303.2participated in major policy decisions and periodic reviews, and encouraged qualified
conversion of the fuel into protons and electrons. Theprotons pass through a sulfonated polymer electrolyte membrane. Meanwhile, theelectrons are conducted back through the gas diffusion layer, bipolar plate, and electricload where they react with the protons and oxygen to form water. For more informationregarding fuel cell construction, the reader is referred to the text of Larminie and Dicks1or the Los Alamos National Laboratory fuel cell website2.Bringing Fuel Cell Concepts into Engineering CurriculaIn this section we will briefly review our efforts in bringing fuel cell technology into theundergraduate and graduate chemical engineering curriculum.At Michigan Tech, fuel cell concepts have been incorporated in several ways: • Alternative
AC 2008-1024: KIDS BIRTHDAY PARTIES: “HAVING FUN AND LEARNINGENGINEERING”Gerardine Botte, Ohio University Gerardine G. Botte: Dr. Botte is an Associate Professor at the Chemical and Biomolecular Engineering Department at Ohio University and the Director of the Electrochemical Engineering Research Laboratory (EERL) at Ohio. She received her B.S. from Universidad de Carabobo (Venezuela), and her M.E. and Ph.D. from University of South Carolina. She worked for three years as a Process Engineering in a Petrochemical Complex (PEQUIVEN, filial of PDVSA. Venezuela) before going to graduate school. Dr. Botte applies chemical engineering principles for the analysis of electrochemical systems. She has
energy. This energy will then be transferred to the greenhouse enclosure atnight. A moveable thermal blanket will be drawn over the top and down the sides of thegreenhouse on cold nights to further preserve heat.A geothermal closed loop ground coil heating system will be furnished for supplementaryheating with radiant hot water as required. This system will basically transfer heat from theground and discharges it into the greenhouse in the cold weather. It is 50% more efficient than astandard gas fired heater. The yearly electricity requirement for geothermal system will be offsetwith the electricity provided by a 7.5 KW solar voltaic system installed on the south facing roofof the adjacent laboratory building.Monthly heat loss charts have been
would be sufficiently flexible to work with other processesshould the project change in the future. While this was not known at the time, buildingthis flexibility into the projects from the start enabled the highly flexible designenvironment currently used.In the Spring 2000 implementation of Senior Design, one of three course projects wasdevoted to paper-only design of the soap plant that could be built in the existing unitoperations laboratory space. Based upon their work, and continued work by Dr. Manevaland Hanyak, the department faculty were convinced that switching second semesterdesign to the practical process would be a good idea.From Spring 2001 to 2003, the course model switched entirely to practicalimplementation of different aspects
their informed consent to participate (IRB approval, RHS#0068), and studentparticipation was voluntary and compensated. All students completed the Index of LearningStyles (ILS)6,7 and the VARK questionnaire8,9, and the supplemental learning opportunities(SLOs) described in this work were held on campus in a teaching laboratory on Tuesdaysbetween 6:00 and 7:00 pm. Five one-hour kinesthetic active SLOs were held during the 10-weekFall 2007/08 quarter: the first two SLOs were held before the first exam in ES 201, the next twooccurred between the first and second exam, and the final SLO occurred prior to the third examin ES 201. Page
presentations such as a thesis defense,seminar for a job interview, and reports for work being done under contract or for an employer.3j. Acknowledgments SectionThe Acknowledgments should include any agency and grant or contract number that providedfunding for the research. The Acknowledgments should also include anyone who providedsignificant help such as other researchers in your laboratory, faculty members who provideduseful suggestions, and other technical and clerical personnel who provided special help.3k. ‘Thank You’ SlideThe ‘Thank You’ slide is a simple slide thanking the audience for their attention. It is a good ideato include your email address on this slide. This is particularly important if you are looking for apost-doctoral appointment
eventinterviews, and (e) focus groups with team members. Team effectiveness is measured by: (a) ateam climate survey, (b) the evaluation of project products (a design report and a poster or anoral presentation followed by a defense), and (c) focus groups with first-year instructors.IntroductionIn 1996, the fourth-year Project Management in Practice (PMP) course was created as an electivein the Chemical Engineering program at the University Rovira i Virgili (Tarragona, Spain). Thecreation of this course responded to two needs although, actually, one of them was much morecompelling than the other. Four instructors teaching three first-year chemical engineering courses- Transport Phenomena, Fluid Mechanics, and Transport Phenomena Laboratory - wanted