Paper ID #37769The development of an artificial intelligence classifier to automateassessment in large class settings: Preliminary resultsProf. Euan Lindsay, Aalborg University Euan Lindsay is Professor of PBL and Digitalisation in Engineering Education at Aalborg University. His focus is the use of technology to flexibly support providing authentic learning experiences for stu- dent engineers. He is best known for his work as Foundation Professor of Engineering at Charles Sturt University.Mohammad Naser Sabet Jahromi, Visual Analysis of People Laboratory (VAP), Aalborg University Mohammad Sabet earned his Ph.D. in Signal
load introduced by the presentation of an idea, and germane cognitive load is the effortrequired to convert knowledge from short to long term memory [17].Cognitive load is related to laboratory activities. At minimum, the presentation of laboratorymanuals can affect extraneous cognitive load. For instance, laboratory manuals that linkdiagrams to text poorly can introduce extraneous cognitive load [18]. Further, medical literatureshows some evidence that pursuing many learning goals can affect cognitive load [19].4 Teamwork, Interdependence, Stress and SpecializationTeam or group-based work benefits student learning [8], and teamwork skills are consideredessential to employment [20], [21], so teaching and learning teamwork is important
necessity, engineers must engage in learning throughout theircareer. Figure 5: Survey Response Frequency on Current Laboratory Learning Outcomes Figure 6: Survey Response Frequency on Past Positive Laboratory Learning OutcomesThe use of Kolb’s cycle in undergraduate engineering has been found to accomplish this mission[20]. Students in a mechanics course undertook a laboratory intended to teach how to derive amaterial’s yield strength. The students were given a combined torsion and bending apparatus andasked to derive equations for torque and moment. After graphing how these variables changedwith the deflection of the experimental apparatus, students measured the deflection of a sampleunder varying loading conditions. They then were
. Her research interests center on interdisciplinary learning and teaching, technology-integrated STEM teaching practices, and assessment development and validation in STEM education.Dr. Daniel S. Puperi, The University of Texas at Austin Daniel is an assistant professor of instruction in the Department of Biomedical Engineering at the Uni- versity of Texas at Austin. Dan received a BS in aerospace engineering from Purdue University and then worked at NASA Johnson Space Center for 15 years before pursuing a PhD in Bioengineering from Rice University. In 2016, Dan graduated from Rice and began teaching four design/laboratory courses required for all undergraduate BME students at UT Austin.Thomas E. Lindsay, The University
live and video recorded). This paper describes a new classroom observationprotocol intended to monitor the focus (e.g., solo, pair, team, or whole class) and action (e.g.,discuss, speak/present, watch/listen, or distracted) of both students and teachers (instructors).The paper summarizes relevant background on evidence-based learning, student engagement,and classroom observation protocols, describes the development and structure of FASTOP,presents results from different pedagogies (e.g., lecture, laboratory, POGIL), and describeslessons learned and future directions. Results show distinctive patterns of student and teacherbehaviors for different pedagogies.1. IntroductionThe ICAP model describes the benefits of interactive (I), constructive (C
-school outreachprogram in engineering design for middle school students (ages 11-14), and how instructorsviewed the successes, challenges, and tensions of their students’ laboratory experiences. A challenge associated with NGSS and ASEE implementation is the meaningful integrationof science and engineering knowledge and skills in precollege teaching and learning. Researchhas identified issues that science teachers encounter with integrated STEM instruction, includinglack of relevant content knowledge, lack of administrative support, and weak self-efficacy inengineering pedagogy [4,10,11]. Research in STEM integration education has suggested thatinnovative instructional models and curricular resources are needed to demonstrate how scienceand
blended project based learning (sbpbl) model implementation in operating system course. International Journal of Emerging Technologies in Learning (IJET), 15(5): 202–211, 2020.[19] Divya Kundra and Ashish Sureka. An experience report on teaching compiler design concepts using case-based and project-based learning approaches. In 2016 IEEE Eighth International Conference on Technology for Education (T4E), pages 216–219. IEEE, 2016.[20] Marc Dahmen, Luis Quezada, Miguel Alfaro, Guillermo Fuertes, Claudio Aballay, and Manuel Vargas. Teaching artificial intelligence using project based learning. Technical report, EasyChair, 2020.[21] D Anitha, C Jeyamala, and D Kavitha. Assessing and enhancing creativity in a laboratory course with
the Hokie Supervisor Spotlight Award in 2014, received the College of Engineering Graduate Student Mentor Award in 2018, and was inducted into the Virginia Tech Academy of Faculty Leadership in 2020. Dr. Matusovich has been a PI/Co-PI on 19 funded research projects including the NSF CAREER Award, with her share of funding being nearly $3 million. She has co-authored 2 book chapters, 34 journal publications, and more than 80 conference papers. She is recognized for her research and teaching, including Dean’s Awards for Outstanding New Faculty, Outstanding Teacher Award, and a Faculty Fellow. Dr. Matusovich has served the Educational Research and Methods (ERM) division of ASEE in many capacities over the past 10
60% ofstudents pursuing a major in a STEM degree in the US do not complete their degree [3].At the national level, it is evident that there is a need to change STEM education in order to bemore effective and accessible to all students [3]. A similar sentiment has been echoed by studentswho have indicated that their undergraduate engineering education experience could beimproved by changing teaching styles and techniques [4]. There is some indication that highereducation is beginning to implement a wide range of teaching practices and strategies (WATPS)[2]. Including a WATPS is not only beneficial for higher education in terms of attracting andretaining students but also for students and industry as a WATPS assists with preparing work-ready
Paper ID #37594IMPACT OF OPEN EDUCATIONAL RESOURCE ON IMPROVING LEARN-ING PERFORMANCE OFSTUDENTSDr. Atefe Makhmalbaf, The University of Texas at Arlington Dr. Atefe Makhmalbaf is an assistant professor at the UTA School of Architecture. She worked for Pacific Northwest National Laboratory (PNNL) as a research engineer and joined UTA after receiving a Ph.D. from Georgia Institute of Technology in Building Science. Dr. Makhmalbaf leads a Building Performance Analytics group at UTA. She develops decision support systems to enhance sustainable built environment. Since joining UTA, she has developed and taught several
barriers to conducting engineeringeducation research. We also hope to shed light on specific barriers that academic collaborationsshould be aware of, and ways academia can support industry in conducting engineeringeducation research.Key words: industry involvement, research-to-practice, educational technologyIntroductionSome engineering companies develop products that are used by academia in two ways. In thefirst case, the company’s core product might be an industry tool that is taught to students in orderto build their skills for future engineering careers. In these instances, the company may havetheir own educational division dedicated to providing students and instructors with resources forlearning with or teaching how to use the products. For
Program,” presented at the 2022 ASEE Annual Conference & Exposition, Aug. 2022. Accessed: Feb. 12, 2023. [Online]. Available: https://strategy.asee.org/scaffolding-reflection-across-the-design-curriculum-triangulating- student-alumni-and-faculty-perspectives-of-the-role-of-design-within-an-engineering- science-program[5] A. J. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A Review of Literature on Teaching Engineering Design Through Project-Oriented Capstone Courses,” J. Eng. Educ., vol. 86, no. 1, pp. 17–28, 2013, doi: 10.1002/j.2168-9830.1997.tb00260.x.[6] R. H. Todd, C. D. Sorensen, and S. P. Magleby, “Designing a Senior Capstone Course to Satisfy Industrial Customers,” J. Eng. Educ., vol. 82, no. 2, pp
Oklahoma State University. Right now, Mohammad is working in the Electrical and Computer Engineering Department at the University of Texas Rio Grande Valley (UTRGV) as a Lecturer 2. He started this position in the fall of 2022, right after he got his Ph.D.Dr. R Ryan Dupont, Utah State University Dr. Dupont has more than 35 years of experience teaching and conducting applied and basic research in environmental engineering at the Utah Water Research Laboratory at Utah State University. His main research areas have addressed soil and groundwater bioDr. David K. Stevens, Utah State University ©American Society for Engineering Education, 2023 Assessing Engineering Students' Behavioral Engagement and
Purdue University. Her research program investigates how model-based cognition in Science, Technology, Engineering, and Mathematics (STEM) can be better supported by means of expert tools and disciplinary practices such as data science computation, modeling, and simulation. In 2015 Dr. Magana received the National Science Foundation’s Faculty Early Career Development (CAREER) Award for investigating modeling and simulation practices in undergraduate engineering education. In 2016 she was conferred the status of Purdue Faculty Scholar for being on an accelerated path toward academic distinction. And in 2022, she was inducted into the Purdue University Teaching Academy, recognizing her excellence in teaching
, Dr. Alexandra Coso Strong works and teaches at the intersection of engineering education, faculty development, and complex systems design. Alexandra completed her graduate degrees in Aerospace Engineering from Georgia Tech (PhD) and Systems Engineering from the University of Virginia (UVa). Prior to attending Georgia Tech, Alexandra received a bachelor’s degree in aerospace engineering from MIT and a master’s degree in systems engineering from the University of Virginia. Alexandra comes to FIU after completing a post- doctoral fellowship at Georgia Tech’s Center for the Enhancement of Teaching and Learning (CETL) and three years as a faculty member at Olin College of Engineering in Massachusetts. Alexandra’s
has primarilybeen applied to automated essay or open-ended question grading, semantic evaluation of studentwork, or the generation of feedback for intelligent tutoring-based student interaction. However,what is notably missing from NLP work to date is a robust automated framework for accuratelyanalyzing text-based educational survey data. To address this gap, this case study uses NLPmodels to generate codes for thematic analysis of student needs for teaching assistant (TA)support and then compares code assignments for NLP vs. those assigned by an expert researcher.Student responses to short answer questions regarding preferences for TA support were collectedfrom an instructional support survey conducted in a broad range of electrical
Tufts University in mechanical engineering and STEM education respectively, and completed postdoctoral work at the University of Michigan. Her current research involves examining different types of homework problems in undergraduate engineering science courses, the intersection of affect and engineering identity, and improving the teaching of engineering courses. ©American Society for Engineering Education, 2023 WIP: Exploring how Students Grapple with Agency in Open-Ended Engineering ProblemsIntroductionThis work in progress paper examines student agency in engineering problem solving. Typicalengineering homework problems, especially those assigned in engineering science
Paper ID #39845A Literature Review to Explore a Relationship: Empathy and Mindfulness inDesign EducationMs. Rubaina Khan, University of TorontoDr. Adetoun Yeaman, Northeastern University Adetoun Yeaman is an Assistant Teaching Professor in the First Year Engineering Program at Northeastern University. Her research interests include empathy, design education, ethics education and community engagement in engineering. She currently teaches Cornerstone of Engineering, a first-year two-semester course series that integrates computer programming, computer aided design, ethics and the engineering design process within a project
the request to post the link on the undergraduateengineering course they were teaching. Participants were then purposefully selected based on theirresponses to the screening survey. Data from these interviews were transcribed, identified, andanalyzed. As suggested by Creswell and Poth [38], and guided by Saldaña [39], a thematic analysisof the interview data was conducted based on consensus between two coders. The thematicanalysis helped identify patterns in the interview data relating to the important factors perceivedby undergraduate engineering students to be important to their MHW. The resultant eleven themeswere then re-grouped and conceptualized into seven factors as can be seen in Figure 1. Please readour published work about this
around 14 years of teaching experience in undergraduate engineering and technology education. His research interest is to explore, understand, and enhance ways to promote self-directed, self-regulated life-long learning among the undergraduate engineering student population. Various pieces of his research efforts are intended to converge into an inclusive instructional design for undergraduate engineering students. ©American Society for Engineering Education, 2023 1 Institutional Role in the Mental Health and Wellbeing of Undergraduate Engineering Students: Student
Polytech- nic State University, San Luis Obispo. He received his Ph.D. in 1994 from Stanford University and has served as a Fulbright Scholar at Kathmandu UniversityDr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for sev ©American Society for Engineering Education, 2023 [Work in Progress] Intelligence is Overrated: The Influence of Noncognitive and Affective Factors on Student PerformanceAbstractWhen
and Associate Head for Undergraduate Programs in the Department of Aerospace En- gineering. He holds an affiliate appointment in the Coordinated Science Laboratory, where he leads a re- search group that works on a diverse set of projects in robotics and education (http://bretl.csl.illinois.edu/). He has received every award for undergraduate teaching that is granted by his department, college, and campus. ©American Society for Engineering Education, 2023 Second-Chance Testing as A Means of Reducing Students’ Test Anxiety and Improving OutcomesAbstractThis full research paper explores how second-chance testing can be used as a strategy formitigating students’ test
://dx.doi.org/10.1037/a0016127.[12] D. H. Uttal et al., “The malleability of spatial skills: A meta-analysis of training studies,” Psychol. Bull., vol. 139, no. 2, pp. 352–402, 2013, doi: 10.1037/a0028446.[13] C. A. Supalo, “Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories,” 2010. Accessed: Feb. 21, 2023. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2010PhDT.......375S[14] T. Green, D. Kane, G. M. Timko, N. Shaheen, and W. Goodridge, “Spatial Language Used by Blind and Low-Vision High School Students During a Virtual Engineering Program,” presented at the 2022 ASEE Annual Conference, Jun. 2022.[15] D. E. Kane, T. Green, N. L
effectiveness, and global competencies He helped establish the scholarly foundation for engineering education as an academic discipline through lead authorship of the landmark 2006 JEE special reports ”The National Engineering Education Research Colloquies” and ”The Research Agenda for the New Dis- cipline of Engineering Education.” He has a passion for designing state-of-the-art learning spaces. While at Purdue University, Imbrie co-led the creation of the First-Year Engineering Program’s Ideas to Inno- vation (i2i) Learning Laboratory, a design-oriented facility that engages students in team-based, socially relevant projects. While at Texas A&M University Imbrie co-led the design of a 525,000 square foot state-of-the
including first year composition, professional writing, and rhetoric. She has been collaborating with Professor Raenita Fenner on ways to improve student learning in Engineering for several years.Dr. Kerrie A. Douglas, Purdue University, West Lafayette Dr. Douglas is an Associate Professor in the Purdue School of Engineering Education. Her research is focused on improving methods of assessment in engineering learning environments and supporting engineering students.Dr. Elliot P. Douglas, University of Florida Elliot P. Douglas is Professor of Environmental Engineering Sciences and Engineering Education, and Distinguished Teaching Scholar at the University of Florida. His research interests are in the areas of
in that position title during the analysis.In the third step, we revisited and quantified the data (frequency) to make sure we couldeffectively use the data. To do so, we refined positioning categories and assigned them toposition options based on previous analysis of positioning within coding experiences. Positionoptions in technical work experience include: self-positioning as an engineering intern, anengineer, a student engineer, a teaching assistant, or an agentic position. We also found somestudents took on two positions, such as self-positioning as an engineering intern and an agenticposition, in their reflections. Thus, we defined and included different combinations of positions.In students’ research experiences, position options
Matthew West is a Professor in the Department of Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign.Dr. Geoffrey L. Herman, University of Illinois at Urbana - Champaign Dr. Geoffrey L. Herman is the Severns Teaching Associate Professor with the Department of Computer Science at the University of Illinois at Urbana-Champaign.Prof. Timothy Bretl, University of Illinois at Urbana-Champaign Timothy Bretl is a Severns Faculty Scholar at the University of Illinois at Urbana-Champaign, where he is both Professor and Associate Head for Undergraduate Programs in the Department of Aerospace En- gineering. He holds an affiliate appointment in the Coordinated Science Laboratory, where he leads a re
methods to promote a culture of laboratory safety [10].Some gamification platforms to gamify classroom activities such as quizzes and surveys havealso become popular; a good example is Kahoot.In addition to gamifying individual learning activities, researchers have also been working onenhancing gamification theories in education. Denny examined the effect of virtual achievementson student engagements in his study [11] and discovered significant positive effect. Inchamnan etal. discussed gamification workflow for growth mindset processes [12]. Su evaluated thecognitive load and possible learning anxiety caused by gamification in education [13]. As part ofthe European Horizon 2020 project NEWTON, an innovative NEWTON-enhanced gamificationmodel was
Paper ID #38665Switching research labs: A phenomenological study of internationalgraduate students.Ms. Ifeoluwa Priscilla Babalola, Texas A&M University Ms Babalola holds a BS and an MS degree in Chemical Engineering. She is currently a PhD. student in Chemical Engineering at Texas A&M University, College Station, TX. In her current research, Ms Babalola designs and develops curricula to teach computational tools to chemical engineering undergrad- uate students. She conducts phenomenological studies to capture and document graduate students’ lived experiences in US engineering programs.Dr. Victor M. Ugaz, Texas A
Paper ID #37742Addressing the Needs of Hispanic/Latino(a) Students with the FlippedClassroom ModelDr. Alberto Cureg Cruz, California State University, Bakersfield Dr. Cruz is an Associate Professor of Computer Science, Principal Investigator of the Computer Per- ception Laboratory (COMPLAB), and board member of the Center for Environmental Studies (CES) at the California State University, Bakersfield (CSUB). He received a few grants from the National Science foundation and local agencies to support work in applied machine learning and engineering education.Dr. Amin Malek, California State University, Bakersfield Professor