reflect the complexity of real-world, wicked problems [2]. Whenstudents do engage with wicked problems, either in the classroom or later as professionalengineers, they find them daunting and difficult. Tackling such problems requiresunconventional approaches such as an awareness of positionality and sustained empathy in theengineering design process. While this process incorporates the concept of empathy, it is notalways explicitly, consistently, and intentionally emphasized.Following recent calls to emphasize empathy in engineering design education [3], [4], [5], wedraw on feminist accounts of virtue and care ethics, and scholarship in the philosophy ofempathy to inform our approach to teaching empathy-based engineering design in anundergraduate
. After each lesson and after thelesson series, students completed a written reflection on what they had learned, totaling to fivereflections over the semester. Their responses will be explored with a thematic qualitativeanalysis to answer the research questions above. The lessons continue to be adapted to thiscontext and are being taught to all sections of the course this semester. A rollout to all incomingfirst-year engineering students is planned for the Fall of 2023, so this analysis is ongoing, and allconclusions drawn so far are from Fall of 2022 and are denoted as a WIP.Definition of EmpathyDuring a pilot study in the Fall of 2022, 59 first-year students in the honors sections of“Introduction to Engineering” at a large R1 university
]. The instrument assesses learning preferences on four scales withtwo dimensions each: Processing with the Active and Reflective dimensions; Perception with theSensing and Intuitive dimensions; Input with the Visual and Verbal dimensions; andUnderstanding with the Sequential and Global dimensions. Ratings are represented by a degreeof preference for each learning scale: balanced (no preference between dimensions), moderatepreference for one dimension, or strong preference for one dimension.In the processing scale, active learners prefer learning the material by applying it, discussing it orexplaining it to others. Reflective learners prefer to think about and reflect on the material first.In the perception scale, sensing learners prefer to
Engineering: Origami bridges, building, structures would soon be possible.Hands on experience: Folding a printer paper and making a basic miuri ori fold: The instructordemonstrated the miuri-ori fold and the students followed. It is a relatively challenging fold tomaster and students needed a couple of hours to complete the fold.Test: The students stacked books on the folded paper and tested to see when it would fail. Thiswas done on zoom and students cheered as others tested their structure.Analysis and Discussion: There was a discussion on why some of the structures could hold up to7 lbs. Other concepts were demonstrated like 1. Poisson’s ratio was negative.breaFig 2. Summary and Reflection Assignment -Student 1 Fig 2
important.The interview protocol was designed to correspond with Experiential Learning Theory’s (ELT)learning cycle (A. Y. Kolb & Kolb, 2009; D. A. Kolb, 1984). The learning cycle is composed offour parts: concrete experience, reflective observation, abstract conceptualization, and activeexperimentation. During the cycle an individual experiences an event (concrete experience),reflects on said experience (reflective observation), congeals said reflections into abstractconcepts (abstract conceptualization), and plans on using the concepts in future situations (activeexperimentation). The theory was selected to frame how/if students are learning professionalskills experientially through their participation in engineering project teams. Since project
beenpreviously documented in ASEE Prism [1], which is quoted below. “ASEE President Sheryl Sorby’s speech at the 2020 Annual Conference outlined a vision for both the organization and engineering education that reflects more diversity and equity. In light of this vision, as well as the societal momentum toward dismantling White supremacy and racism, ASEE has launched a Year of Impact on Racial Equity. Many aspects of engineering culture have origins and practices that center Whiteness and exclusivity. However, we are all caretakers of this culture and can either protect exclusionary traditions or strategically design models that better meet the diverse challenges and needs of our society. In order to
self-regulatedlearning skills.Purpose: The study was designed to gather insights into the students’ experience with theresearch course and understand what self-regulated learning skills they developed as part of thislearning experience. Specifically, the study examines “What are students' perceptions of the roleof self-regulated learning and project management skills in the context of their researchproject?”Methods: The study was conducted in a senior-level undergraduate course offered at a large mid-western university. The course focused on project management, research skills, and mentorshipin the context of a research project. Data were collected through guided student reflections at theend of the semester and analyzed thematically according
theHighlander Folk School model of reflection and practice (Brian & Elbert, 2005) can supportradical change in systems. Much of the work done in the Eco-STEM project thus far hasemphasized the role of faculty through Faculty Communities of Practice (F-CoP) (Warter-Perezet al., 2022), an inclusive Teaching Repository, a reflective Peer Observation Process and Tool(Bowen et al., 2022b), and a Student Experience Survey that is in the process of development(Eco-STEM). However, in this paper, we describe how leaders, in their leadership capacity aschairs of science and engineering departments, develop an understanding of their role as leadersthrough a lens of power and privilege--both as individuals in the broader context of society (e.g.,mostly white
and AttitudesAbstractFeedback is a key element in the development of students’ understanding and evolution in theirlearning process. Students receive feedback in so many forms including peer feedback, instructorfeedback and external feedback from employers or other industries. For this feedback to bevaluable, students need to appreciate it, act on it, and consider it as part of the learning process.The literature shows that there is a discrepancy between instructors’ objectives for feedback andstudents’ perception of the effectiveness of feedback to improve learning. Mostly, students tendto focus on grades rather than reflect on the feedback and take actions to improve their learning.Even when instructors give detailed personalized comments
Concept MapsAbstractThis paper describes a work-in-progress study investigating the use of concept mapping forassessing students’ conceptual knowledge over a semester in a biomedical engineering modelingcourse. The concept maps are used to evaluate the evolution of students’ skills in developingmathematical models that describing biological systems and students’ specific contentknowledge as they complete problem-based learning projects. As students gain experiencedeveloping mathematical models to answer open-ended problem-based learning questions, wehypothesize that their conceptual understanding of mathematical modeling and of the biologicalsystems studied will increase. This improved conceptual understanding is reflected by conceptmaps with
, as reasoning and emotion are ofteninterwoven. Newly enrolled doctoral candidates were asked to explain ‘why a PhD’ usingLEGO® pieces to help them express beyond words, with constructions, through similes andmetaphors. The use of LEGO® was intentional for two reasons: it gave them a visual andkinesthetic outlet for enhancing and deepening their reflections and message; and it put themat ease, in ‘play mode’, which allowed them to access aspects of their psyche not typicallyexploited in technical conversations. They constructed stories, created characters, andproduced metaphors to channel and express what their motivations, drives and purpose were.The most common types of metaphors used were visual, ontological and spatially related.Their
asking students to reflect on their activityexperience considering this new information. To end the module, students would complete the“Working Styles Assessment” [14] to think introspectively about how they naturally work.Students will also share their working styles with their teammates. This activity has three maingoals: 1) students should gain an appreciation for the existence of different working styles, 2)team members should understand each other’s primary style so that they can work together moreeffectively, and 3) students may recognize the need to adapt their primary working style based onthose around them and their role on the project. Students will again be asked to reflect on theirexperience in the first activity. Teams may have
the earlier portion of the course. Theauthors (instructors of the course) provide (1) ideas for experimental topics of interest which areapplicable to chemical engineering students, 2) focused research opportunities with facultymembers or local entrepreneurs and businesses, and 3) community-based learning experienceswith the ETHOS center at the University of Dayton. Once the instructor approves astudent-centered experiential learning project, the students define the specific objectives, performexperiments or simulations, and summarize the analysis and findings in a final technical report ormemorandum. After submitting the final report, students also provide a written reflection of theirwork and learning experience.In the most recent academic
comes fromhands on testing and each team will ensure testing of concepts prior to solidifying final designs.As part of this process, each team member is required to report – in memorandum format and inan oral presentation – their prototype design, device, test procedure, and test results. They submittheir work to the instructor and share their results with their team members. At the end of thesemester the students reflect, using an online survey, on the role the individual prototyping andtesting experience played in their (1) contribution to the team, (2) learning of technical matter,and (3) confidence in working a design project in the future.This paper reports on the student responses to this reflection. It also reports on the evaluation
this, we examine methods for promoting an individual team member’s skilldevelopment, confidence, and goal attainment while contributing positively to their team’scohesion and product. We include three data sources: timely surveys of students’ goals, progresstowards those goals, and how they align with their perceived contributions to the team; teamchecklists and manufacturing plans updated in real time to include specific tasks, ownership,status, and any assistance required; and students’ reflective documentation of shared knowledge,skills, and mental models. These data are complemented by peer assessments occurring at majorproject milestones [11]. Combined, these instruments are used to track student and team growthin the context of team
integrating entrepreneurially minded experiential STEAMlearning into a second-year engineering course - Design & Manufacturing Processes I. A total ofsix students enrolled in the course. The project required students to develop engineeringactivities to highlight water pollution via the design, fabrication, and programming of softrobotic fish. During one semester, students formed teams to work on project tasks, includingsketching out a fish, designing a mold (fish) in Solidworks, 3D-Printing the mold, fabricating thefish (pouring silicone into the mold), testing the fabricated fish, programming the fish forblinking light and vibrations. A metacognitive photovoice reflection was used to assess theproject's impacts. The preliminary thematic analysis
program in the Mid-Atlantic region were tasked to write a reflective essay explaining the challenges faced intheir first four weeks in college. A thematic analysis of the qualitative data was used to analyzethe reflective essays.This “work in progress” paper will summarize the main results of the study. Based on theanalysis, we propose interventions to assist these students in their transition from high school tocollege. This project is relevant to institutions seeking to improve the retention of students intheir engineering programs.Background:First generation college students are defined as students whose parents completed only a highschool diploma or equivalent. Some researchers include in this classification those studentswhose parents
we hoped to develop in thestudents. However, the reflections also highlighted challenges and shortcomings of our currentmodel. For this work-in-progress paper, we share our salient findings from each theme, as wellas instructor observations and lessons-learned from this community project capstone model.IntroductionCapstone design is a critical culminating experience in the academic trajectory of allundergraduate engineering students. At the University of San Diego (USD) senior engineeringstudents across three disciplinary majors (electrical, integrated, and mechanical engineering)collaborate on transdisciplinary teams during their year-long capstone design course experience.Teams work on traditional industry-sponsored projects
-based assessments, presentations, and reflections. Thesesections were distilled using a combination of classroom experience and research. Eachof these elements is powerful on its own but added together they create opportunitiesfor students to build self-efficacy, belonging, and inclusion. These qualities then lead toclassrooms that can foster students who can find resilience and joy in diversity andcreate equitable spaces. The framework I developed is visualized in Figure 1 below. Iwill describe each of these elements and the research that went into them.Before the Framework: While doing research around actionable science DEIB strategies, I encounteredand studied social-emotional learning (SEL). While the tenants of following theframework
CSEdResearch.org 1 adrienne@buffalo.edu, 2 monica@csedresearch.orgAbstractWe recently hosted a workshop that brought together 12 K-8 teachers who teach computer science(CS) and/or computational thinking and 12 CS education researchers. Since there is a known gapbetween practices that researchers study and practices that teachers implement in a learningenvironment, the purpose of our full-day workshop was to create a meaningful space for teachersand researchers to meet and explore each others’ perspectives. The dialogue was framed aroundteachers’ classroom experiences with researchers reflecting on how they could improve theirresearch practice. The workshop, held during the 2022 CS Teachers Association (CSTA)conference
abilities to inform career decisions [10]. Strong evidence suggests the importance ofidentity formation through experiential education; however, there are many questions that stillremain unanswered about how engineering programs can help create pathways for students tomeaningfully participate and develop professional identity, especially at scale.While experiential learning and engineering identity formation are important to the collegeexperience, challenges remain for creating robust structures for students to reflect, conceptualize,and apply their learning. Kolb [13] recognized that the experiences themselves are not enough.His model describes a cyclical process that begins with a concrete experience, followed byreflection on that experience
using the Engineering Design Process (EDP)within the context of the accomplishments and mindset of Da Vinci. The course exploredengineering mechanics and design topics concurrent with applying physics topics in anengineering laboratory. A qualitative analysis was performed using a new reflective tool,PhotoVoice. The purpose of the assessment was to better understand the impact of the course onthe student vision, the operation of the course relative to what they have encountered in theireducational careers, and student-perceived learning outcomes. Analysis of student reflectionsrevealed themes of “Changed Perspectives,” “Engagement in the Classroom,” and“Brainstorming Benefits” when describing the impact of the course on their career visions
] during the REU. Thefollowing program components were used to develop students’ technical and professionalleadership-enabling competencies: virtual setting, research projects, posters, technicalworkshops, journal club, faculty seminar networks, community hours, and weekly reflection andsurvey. A Virtual SettingDue to restrictions following COVID, the REU site was held virtually. While this meant somestudents and faculty never actually met face-to-face, it allowed students the opportunity to workon projects across various geographic regions and meet and connect with faculty and mentorsaround the world. This virtual site was strategically organized to optimize student engagementand learning opportunities in a remote environment. The REU
work-in-progress paper motivates dispositions within computing disciplines and presents thebackground of this approach. It also discusses the use of reflection exercises and vignettes in un-derstanding, promoting, and fostering behavioral patterns that undergraduate computing studentsidentify as related to dispositions they experience in the course. Preliminary data and results fromthe study are also presented.1 IntroductionA major concern in higher education is to ensure that graduates are “career-ready,” that is, they notonly have learned knowledge and skills that are needed by employers but have also developed theprofessional traits and attitudes necessary for a successful career. This is especially important infields such as engineering
paper shares the methodology and findings of a workshop onconflict management that was piloted in three interdisciplinary engineering design courses thatinclude first through fourth-year students. The workshop was designed to collect real-timestudent reflection data through Mentimeter, an instructional technology designed to promoteclass engagement.Background: Emerging literature from Industrial and Organizational (I/O) Psychology hashighlighted the importance of effective conflict management on team performance. Teachingstudents how to effectively manage conflict and establish inclusive, psychologically safe teamenvironments are essential skills for effectively working on teams in preparation for theworkplace, as emphasized by ABET and
mechanicalengineering course on Dynamics of Machines to (1) give students access to real-world learningexperiences and (2) explore and identify the ways in which an interdisciplinary design projectthat combines key components of EM, STEAM and bio-inspiration impacts students’ learning.The results include initial findings from a thematic analysis of the data collected usingphotovoice reflections. Adopted from the relevant studies in the literature in the context of EMcurricular activities, photovoice reflections combine pictorial and textual data and constitute aportion of the project’s conclusion section submitted by students. The paper then discusses futuresteps on the use of interdisciplinary design projects which provide real-world experientiallearning
in engineering practices?Educational Intervention and Study Context Data for this study were collected as a part of a funded research project that seeks tounderstand how rural elementary classroom teachers learn engineering content and practicesthrough professional learning experiences and how a subset of them take those experiences intotheir classroom. Over the course of three years, teachers from rural school districts serving theepistemic practices of engineering [4] through participation in classroom engineering activities,reflecting on them using both their “student hat” (as a learner) and “teachers hat” (as a teacher)[32], and through learning the specific engineering units they will teach. In this case, we use theYouth
trainingsessions for writing center consultants. The quantitative assessment investigated (1) students’confidence in their writing skills from self-efficacy surveys gathered pre- and post- the modifiedassignment and (2) draft and revised writing samples from the intervention class and a control.For the quantitative analysis, we used paired t-tests to compare the pre- and post-self-efficacysurveys, and MANCOVA to compare the draft and final writing sample scores. The qualitativeassessment drew from students’ views on the intervention and course from reflection essays,analyzed for themes. Results for the intervention showed significantly improved self-efficacyscores in assignment content, as well as in higher and lower order writing skills. Assessedwriting
. The course taught skills related to engineering practice,such as unit systems, dimensional analysis, and technical communications. While these skills areimportant for engineering students to master, learning them outside of any specific applicationwas not as engaging or as applicable for students. Furthermore, the content and delivery formatof the course did not allow for much “face-time” to cover the topics in enough detail or withopportunities for exploration or application in context. In addition, students conductedassignments individually, with minimal collaboration. Assessments were memorization basedusing multiple choice questions and with not much opportunity for reflection. The final paperthat students had to submit, based on their
self-assessment of whether or notthey are confident in their ability to write and debug simple programs” [p. 125]. Self-concept is“a composite of self-perceptions that one can be a good programmer, which is formed throughexperience with and interpretations of one’s environment” [p. 125]. Interest is “the extent towhich an individual enjoys engaging with programming-related activities”[p. 124]. Anxiety isthe “self-reflected state of experiencing negative emotions, such as nervousness or helplessnesswhile writing and debugging programs” [p. 125]. The programming aptitude mindset represents“the strength of a learners’ belief in the notion of a fixed programming aptitude (e.g., aptitude isinherent and cannot change)” [p. 125].The implications of