entrepreneurial opportunities in renewable energy systems.Introduction While many engineering educators have heard of service learning or extracurricularuniversity activities designed to engage students with renewable energy technologies [1,2] oreven clinic-based courses and project-based learning experiences involving photovoltaic (PV)projects [3-7] it remains a more difficult and challenging task to bring these experiences into thecore curriculum of an ECE program. This paper details one somewhat successful attempt.Throughout six weekly laboratories (at the latter half of the semester), teams comprising threestudents each analyzed and evaluated the potential for PV to power an electrical appliancetypically found in a residential setting. Teams
theteaching and learning of a physics course through the students' perception. The modifiedILD has the same three stages as the original ILD, with two main differences in whoperforms the experiment and when it is performed. Specifically, the three phases in themodified ILD are 1) predict, 2) experiment (by students working in groups, not theinstructor), and 3) reflect (in groups, not individually). The first phase, prediction, beginswith the analysis of a physical situation in which students have to predict the behavior ofthe situation based on the knowledge imparted in the session by the instructor. This occursat the end of the instructor's exposition. The second phase occurs in the laboratory sectionof the course and relates to students' experience
fulfilling manufacturers’ needs for skilled engineers.Partnerships with neighboring community colleges and technical schools help to realign theexisting curriculum, develop new courses, and laboratories, and share resources. Thesepartnerships will not only support students but also help colleges develop new certificate orassociate degree programs.Establishing a new engineering technology program that fulfills ABET ETAC requirements is amajor undertaking not only for the administration but also for the faculty and staff. There is a hugeresponsibility to develop the curriculum and assessment tools to meet the program objectives,achieve student outcomes and satisfy the university requirements. All regional campuses of thisinstitution are uniquely co
and equitable course design checklist that enables facultyto proactively incorporate inclusive principles into various aspects of their course design,including syllabi, content, assessment, and pedagogy. With input from students, educators,and instructors, this checklist is primarily designed for mechanical engineering faculty, withan emphasis on aspects such as design and laboratories. Still, it can be widely applied to otherengineering courses.Furthermore, our paper seeks to shed light on the dynamic nature of such checklists. Giventhat our understanding of learning and human identity continues to evolve, we mustcontinually re-evaluate how we perceive equity and inclusivity in education. Hence, weenvision our checklist as a living document
, Northwestern State University, and Franklin University. Dr. Bachnak received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Ohio University. His experience includes several fellow- ships with NASA and the US Navy Laboratories and employment with Koch Industries. Dr. Bachnak is a registered Professional Engineer in the State of Texas, a senior member of IEEE and ISA, and a member of ASEE. ©American Society for Engineering Education, 2023 Engineering and Engineering Technology Capstone Design Teams Lead to Successful ProjectsAbstract- The electrical engineering (EE) and electrical engineering technology (EET) programsat Penn State Harrisburg have two
required by the 4IR is a significant burden. Traditional engineering curriculum typicallyattempt to blend theoretical knowledge, following the disciplines of mathematics and thesciences, with practical skills. Mechanical engineers, for example, might take courses inmathematics, physics and design supplemented with laboratory experiences teachingprogramming, machining, and Computer-Aided Design (CAD). The results of these curricula areengineers with a broad understanding of many subjects, with some applied skill sets. However,the number and complexity of courses required for successful establishment in industry makesengineering programs the longest programs in universities (as measured by credit hour). Johnsonet al. [8] found that among
Engineering at the University of Dayton. He received his B.Eng. in Chemical Engineering at UCA in El Salvador. He obtained his M.S. from Clemson University and his Ph.D. from Mississippi State University, both in Chemical Engineering. His laboratory research involves nanotechnology in chemical and biological pro- cesses. His educational research interests are community-based learning, open-ended laboratory experi- ments, teamwork, collaborative and active learning, and Transport Phenomena computational modeling.Dr. Homero Murzi, Virginia Polytechnic Institute and State University Dr. Homero Murzi (he/´el/his) is an Associate Professor in the Department of Engineering Education at Virginia Tech. Homero is the leader of the
Conditioning/Finishing Grinding Burnishing Polishing Safety Laboratory Guidelines Attire & Equipment Machine SafetyQuantitative Computational Thinking Algorithm Forming Software Design, Implementation, & Programming LanguagesAnalysis Testing Computational Tools Spreadsheet Tools Computational Environment System Design Tools Data Collection, Analysis, Data Collection Techniques Data-Driven Decision Making Data Visualization
course covers major microfabrication techniques from theory topractice, used to develop micro devices or components. This includes a hands-on laboratorysegment of the course during which students work in groups with guidance from the instructor tofabricate MEMS (Micro-Electro-Mechanical Systems) from blank silicon wafers in a cleanroom. Students are expected to develop their own MEMS design and perform all lab processeson the silicon wafers, including CAD design, photolithography, doping, etching multiple layers,etc. The hands-on laboratory segment of the course provides students with a unique opportunityto work in a modern, clean room and physically perform the complex processes required todevelop MEMS wafers from scratch.As another assignment
damitht6@my.yorku.ca, a.d.n50@hotmail.com, mjadidi@yorku.caKEY WORDS: Virtual Reality, Engineering Education, Earth systems, Experiential EducationABSTRACT:Learning complex engineering concepts in varying fields, from learning how to prototype a circuit on a breadboard all the way tolearning about the complex geological features that make up well known terrains, require hands-on experience as well as accessto sophisticated equipment. In the former situation, many educational institutions can afford lab equipment such as electroniccomponents and large laboratory workplaces. However, there are instances where purchasing expensive equipment for learningis not a viable option. In the latter case, learning about the geological features of a place such
finances as well aslocation of the institution. Intercity campuses face very different challenges when it comes toexpansion compared to rural campuses, and the low frequency of 1’s in the responses suggestthere might not be straightforward strategies to overcoming this obstacle.Of the 19 statements that were rated with a score of 4 or 5 with a frequency of 29% or greater,statement 48, which deals with independent access to laboratories by students, is the only onewhere no one responded with a 5. These results suggest that while independent access forstudents is a concern, it is not one of the most pressing concerns for new programs. This may betied to availability of resources related to running an academic makerspace, including differentmodels
teaches advanced undergraduate laboratory courses and manages the senior capstone program in the Micron School. He ©American Society for Engineering Education, 2023 Building a Communication-Integrated Curriculum in Materials ScienceAbstractWith the need to meet ABET outcomes around professional skills, such as communication andteamwork, engineering programs have long explored approaches to ensure their graduates areable to participate in the workplace in ways that employers demand. While approaches vary andsuccess depends on a number of factors, research demonstrates that an integrated approach toprofessional skill development is the most impactful for student learning. How can anengineering program build an
mainly focus on Smart Structures Technology, Smart Connected Health, Structural Control and Health Monitoring and Innovative Engineering Education.Dr. Xiaorong Zhang, San Francisco State University Dr. Xiaorong Zhang is an Associate Professor in Computer Engineering in the School of Engineering at San Francisco State University (SFSU). She is the Director of the Intelligent Computing and Embedded Systems Laboratory (ICE Lab) at SFSU. She has broad research experience in human-machine interfaces, embedded systems, and engineering education. She is a recipient of the NSF CAREER Award to develop the next-generation neural-machine interfaces (NMI) for electromyography (EMG)-controlled neurore- habilitation. She is a
an engineering technology introductory foundations course. The course is requiredfor all students in the engineering technology department and is recommended for studentsexploring the engineering technology discipline, creating a unique culture within the classroom.The course includes two lectures, one recitation, and a two-hour hands-on laboratory summingup five hours of class time in a 4-credit course. The course has a total enrollment of over 300undergraduate students from more than twelve different majors. Students enrolled in the coursecompleted a set of surveys based on the Intrinsic Motivation Inventory (IMI) which is based onSelf Determination Theory and is designed to measure perceived interest, intrinsic motivation,and other
of engineeringas found in a study comparing 1994 and 2004 engineering graduates [5]. Research suggests thatABET outcomes be taught through traditional lecture courses, laboratory courses, and project-based learning such as capstone and cornerstone projects [4]. Some ABET outcomes, forexample 3,4, 5, and 7 (as denoted in Table 1), can be perceived as less technical, focusing onabilities such as communicating “effectively with a range of audiences”, functioning “effectivelyon a team”, and recognizing “ethical and professional responsibilities in engineering situationsand [making] informed judgements” [1]. Supporting ABET’s teaming outcomes, research showsthat to succeed in industry, engineers must have multidisciplinary teaming skills, such as
Norwegian Centre for Autonomous Marine Operations and Systems (a Centre of Excellence for re- search in Norway) on locomotion control of ground and swimming snake robots. In 2011, he received the Masters degree from the University of Alberta, Canada where he was with the Telerobotic & Biorobotic Systems Laboratory. He joined the Locomotor Control Systems Laboratory at the University of Texas, Dallas, as a Postdoctoral Research Associate in November 2016, where he was using neuromechanical principles in the context of feedback control theory to design wearable robot control systems. His research interests include robotics, control systems, and cyber-physical systems.Prof. Destin Heilman
several sections, including PV (photovoltaic engineering),H2PEM (Proton Exchange Membrane hydrogen fuel cells), wind energy technology and solarenergy assessment. The impact of these technologies on a future hydrogen economy, the impact onsmart grids, and job creation are also introduced. The curriculum draws heavily on the experienceand background, both theoretical and field experience, of the instructors including NSF and DOEgrants that allowed the design and implementation of a certified hydrogen development laboratory,and development of instructional materials for PEM training. The curriculum integrates key topicssuch as MATLABR and SIMULINKR modeling and simulation of critical components includingPEM Fuel Cells, PV with storage and grid
training, and athleticcompetition. Acceptance rates are low, around 12% [12], but graduation rates are high,approximately 80-85% [13]. Unlike many other academic institutions, incoming USAFAstudents are not accepted to a college or school associated with a major’s program (e.g., Collegeof Engineering). USAFA has nine institutional outcomes, and one is devoted to all graduatesbeing able to apply the engineering method. To meet this outcome, all students take fiveengineering courses as a part of the general education curriculum regardless of their major. Theearly general education engineering courses present an opportunity to recruit undeclared studentsinto engineering during their first year.Field Engineering and Readiness Laboratory ContextIn
(i), (ii) were deployed in 2-, 3-day PIC device characterization bootcamps, co-organized bythe collaborators’ Laboratories for Education, Application, and Prototyping (MassachusettsLEAP Labs) [19]. A Three-Legged Stool (3LS) training model that combined lecture, VR simtraining, and lab-site physical tool trainingwas developed to structure and pace this high-volumecontent, short-duration intensive training experience.The 3LS emphasis on hands-on experiential education in a lab or lab-like setting, is an integralcomponent of most Science, Technology, Engineering, and Math (STEM) learning processes,including in the manufacture of PIC chips. In addition to mastering fundamental concepts insemiconductor electronic and photonic device design and
of Connecticut conducted a PBSL experience where approximately 400first-year engineering students designed and built Corsi-Rosenthal (C-R) boxes (DIY AirPurifiers) that trap 56-91 % of respiratory aerosols and improve indoor air quality. The C-Rboxes were built for a nominal cost of $60 per box, using a 20” box fan, four 20”x20”x2”MERV-13 filters, the box from the fan, and duct tape. The project was carried out by smallgroups (3-4 students) working in the First-Year Design Laboratory over four weeks. At the endof the project, the C-R boxes were distributed to the local elementary schools. During the pandemic, these first-year engineering students had completed their final yearin high school remotely, under lockdown. Thus, this C-R box
domestic undergraduate students in focus in the United States higher education institutions. In addition, Mr. Halkiyo is interested in broadening the participation of engineering edu- cation in Ethiopian universities to increase the diversity, inclusivity, equity, and quality of Engineering Education. He studies how different student groups such as women and men, rich and poor, students from rural and urban, and technologically literate and less literate can have quality and equitable learning experiences and thrive in their performances. In doing so, he focuses on engineering education policies and practices in teaching and learning processes, assessments, laboratories, and practical internships. Mr. Halkiyo has been
. Gregory L. Long Ph.D., Massachusetts Institute of Technology Gregory L. Long, PhD is currently the Lead Laboratory Instructor for NEET’s Autonomous Machines thread at the Massachusetts Institute of Technology. He has a broad range of engineering design, prototype fabrication, woodworking, and manufacturing experiNathan Melenbrink, Massachusetts Institute of TechnologyDr. Amitava ’Babi’ Mitra, The Pennsylvania State University Amitava ’Babi’ Mitra linkedin.com/in/babimitra|+1-617-324-8131 | babi@mit.edu Dr. Amitava aˆ C˜Babiˆa C™ Mitra is the founding Executive Director of the New Engineering Education Transformation (NEET) program at MIT ©American Society for Engineering Education, 2023The
Paper ID #38203Undergraduate Research as a Tool for Building Entrepreneurial Mindset inEngineering StudentsDr. Heather Dillon, University of Washington Dr. Heather Dillon is Professor and Chair of Mechanical Engineering at the University of Washington Tacoma. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining academia, she worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer working on both energy efficiency and renewable energy systems, where she received the US Department of Energy Office of Science
Paper ID #39576Unconventional Applications of Introductory-Level Aerospace EngineeringConcepts: Evaluating Student Engagement and Performance in aFree-Response Exam FormatBenjamin Casillas, Texas A&M University Ben Casillas is a senior aerospace engineering major at Texas A&M University. As an undergraduate researcher at the NUANCED Laboratory, their work focuses on novel presentations of introductory-level curriculum. Outside the lab, their interests include chemical rocket propulsion, spaceflight human systems integration, digital art, and music composition.Dr. Kristi J. Shryock, Texas A&M University
logiccircuits. In this work, we emphasize student learning of sequential logic circuits since it is atopic that embodies all of the preceding topics in the course. During the laboratory sessions,students learn how to use programmable logic devices (i.e. FPGA) and write HardwareDescription Language code to model the circuits that they learn about in the lecture.Figure 1 shows an example assessment from the class. In this problem, the students were given acircuit with several flip-flop circuits, an example input waveform and were asked to predict whatthe output waveform would be. This sample problem, and student response, shows whysequential logic circuit are so difficult for students to analyze. Not only do they have to recallhow each device operates
Undergraduate Programs in the Depart- ment of Bioengineering at the University of Illinois at Urbana-Champaign (UIUC). She has been active in improving undergraduate education including developing laboratories to enhance experimental design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she works closely with the departmental leadership to manage the undergraduate program including: developing course offering plan, chairing the undergrad- uate curriculum committee, reviewing and approving course articulations for study abroad, serving as Chief Advisor, and representing the department at the college level meetings. She is
, mechanics of materials, soil mechanics with a laboratory,civil engineering materials, and introductory structural analysis. Furthermore, over 70% ofprograms offer the following topics in a required or elective undergraduate course: dynamics,steel I, reinforced concrete I, and foundations. While many programs offer a robust list ofgraduate course offerings in their catalogs, none of the programs require the following coursesand fewer than 40% of universities made them available to students in undergraduate programs:seismic, wind, finite element methods, structural dynamics, steel II, concrete II, masonry design,prestressed concrete, and bridge design. The data showed that universities conferring graduatedegrees offered more courses, but only some
-school outreachprogram in engineering design for middle school students (ages 11-14), and how instructorsviewed the successes, challenges, and tensions of their students’ laboratory experiences. A challenge associated with NGSS and ASEE implementation is the meaningful integrationof science and engineering knowledge and skills in precollege teaching and learning. Researchhas identified issues that science teachers encounter with integrated STEM instruction, includinglack of relevant content knowledge, lack of administrative support, and weak self-efficacy inengineering pedagogy [4,10,11]. Research in STEM integration education has suggested thatinnovative instructional models and curricular resources are needed to demonstrate how scienceand
Paper ID #39049Board 367: Reflections from an Interdisciplinary Team Research Projectduring a 10-week NSF REU ProgramProf. Eric Markvicka, University of Nebraska, Lincoln Dr. Eric Markvicka is an Assistant Professor in the Department of Mechanical and Materials Engineering at the University of Nebraska-Lincoln (UNL). There, he also holds a courtesy appointment in the De- partment of Electrical and Computer Engineering and the School of Computing. At UNL Dr. Markvicka directs the Smart Materials and Robotics Laboratory, an interdisciplinary research lab that is creating the next generation of wearable electronics and
Bryan ISD PSJA ISD Ave teacher salary (%) Aldine ISD 0 50 100 150 200 % Relative (100 = Texas' average) Fig. 1. Comparison of ISDs near TAMU [2]The program aimed to recruit 10 in-service teachers and 2 pre-service teachers each time for 3summers. The 6-week program was originally divided into 3 periods. The program providedhands-on laboratory activities to complement the theoretical sessions. 1) Weeks 1, 2: Program covered orientation, lab safety, and