, particularly capstone courses, that has received little attention is how to characterize andchoose suitable design projects.To better understand what aspects of design projects lead to successful capstone designexperiences for students, six years of evaluation data on electrical engineering capstone designprojects at a large, public research university were reviewed. Additionally, transcripts from fouryears of a capstone design course end-of-semester “after action review” by faculty, students, andteaching assistants were reviewed. From this work several characteristics of “successful”capstone projects emerged. While a definition of success is, of course, highly dependent onprogram specific outcomes, for this study success was defined as a project that
, 2010 Real-Time Video Transmission from High Altitude Balloon: an Interdisciplinary Senior Design ProjectAbstractWith engineering students facing increasing distractions, it has become more and morechallenging to design and create attractive means to recruit and retain them. In the paper wepresent an interdisciplinary senior design project with collaboration of electrical and mechanicalengineering students which attempted to transmit real-time video from a high altitude balloonfrom 100,000 feet altitude. Through this experience, students have learned principles ofintegrated engineering technology, and sharpened their skills in cooperative learning, effectivelearning and team work. The learning outcome of this
semester of 2008, the program is the fourth largest discipline at theinstitution in terms of freshman enrollment. At the core of the curriculum are four signaturecourses called Unified Robotics I-IV. The educational objective of these courses is to introducestudents to the multidisciplinary theory and practice of robotics engineering, integrating thefields of computer science, electrical engineering and mechanical engineering. In addition totaking these and other courses, it is a requirement that all WPI undergraduates, regardless ofdiscipline, complete a senior-level project in their major field of study called Major QualifyingProject (MQP). This paper discusses the capstone design experience within the context of ournew RBE degree program
AC 2010-1370: LEARNING FROM RENEWABLE ENERGY RELATEDCAPSTONE PROJECTSYuyi Lin, University of Missouri Page 15.835.1© American Society for Engineering Education, 2010 Learning from Energy Conversion Related Capstone ProjectsAbstractStudents’ capstone-design projects are more and more focused on renewable energy generationand conversion due to ever-increasing energy consumption and a concern for environmentalprotection. The initial challenge arises from the first step in any design process -- how to justifyworking on energy-related topics given severe constraints on time and other resources in atypical capstone project. Since many topics and problems related to renewable energy
to test the abilities students have gainedover their college careers and to provide a design experience that simulates real-worldengineering. An important factor in giving students a valuable Capstone Design experience isthe selection of an appropriate project. A good project for this purpose should have appropriatetechnical rigor and allow students to focus as much as possible on engineering design rather thanon logistical activities like fundraising. Further, the work done by students in the course shouldbe assessable, both for the purposes of accreditation and for assignment of grades. Additionally,the deadlines imposed must be appropriate, and evaluation criteria need to be established.One solution for many of the project planning
beengreatly reduced so that it is feasible for the two companies to sponsor HIL systems for all of theschools.Recommendations and SuggestionsThe use of HIL can be very useful in research situations that require vehicle control. It isrecommended that universities that are doing either vehicle system research or vehiclecomponent control research (engines, motors, fuel cells, etc) explore the usage of HIL in theirlabs. Developing an HIL simulator is a great research project in itself and will enable manyfuture projects in a much shorter timeframe yielding significant results in laboratoryexperiments. Page 15.767.10Bibliography1. Hanselmann, Herbert
PolytechnicInstitute determined that, while the vast majority of capstone design projects satisfied ourrequirements for Capstone Design, there were several disturbing trends. Specifically, it was noticed that students were lacking the skills to perform serious designsynthesis; they were not adequately addressing issues of quality, safety, reliability andmaintainability; little attention was being paid to issues associated with economics; students werehaving difficulty understanding how different areas of Electrical Engineering related to eachother; and significant amounts of faculty time were spent teaching project teams the designprocess. To correct these problems, a course was developed which focused on teaching students,during their second
ProjectsAbstractIn this paper, the use of impromptu design as a tool for introducing the engineering designprocess is discussed. In a typical impromptu design exercise, a simple design problem, capableof being completed in a short amount of time, is solved by teams of engineering students. Insolving the design task, the students organically progress through the engineering design process.This provides a unique opportunity to introduce beginning engineering students to the designprocess and to reinforce engineering design concepts for more senior students. This paperfocuses on the development of impromptu design projects, the use of this activity to introducethe engineering design process, and thoughts and observations gained over three years of usingthis
AC 2010-921: CAPSTONE SENIOR PROJECT MENTORING AND STUDENTCREATIVITYWael Mokhtar, Grand Valley State University Page 15.259.1© American Society for Engineering Education, 2010 Capstone Senior Project Mentoring and Student CreativityAbstractAfter the 2000 ABET accreditation changes, many Engineering Schools expanded or startedcapstone senior projects to meet the realization aspect of the engineering education. It is offeredin several versions including one and two-semester course. The capstone project offers anintegrated experience for the senior students to apply their engineering knowledge to solve aresearch or applied open-ended problem. The typical project includes
instructional redesign process. Two majorcharacteristics of threshold concepts, integrativity and transformativity were used to identifyhorizontal alignment candidate-concept for the highway design process.Using concept maps generated as guides through the integrativity of learning associated with thehorizontal alignment, several adjustments to the structure of lecture materials and project taskswere made. In addition, reflective assessment items were administered after each redesignedinstructional task and at the end of the course. Students’ answers to these reflective assessmentshelped identifying trends associated with the transformativity of horizontal alignment in thecontext of highway design. The analysis of students’ reflective assessment
AC 2010-1327: WATER TURBINE: IMPROVING A PROJECT FORREINFORCING MACHINE COMPONENT DESIGNHarold Henderson, United States Miliary Academy MAJ Harold Henderson graduated as an Armor officer from the United States Military Academy in 1998. He has served in the U.S. Army in the United States and Iraq. He holds a Masters Degree in Mechanical Engineering from Auburn University. His research interests include unmanned ground vehicles, energy harvesting, instructional technology and distance education. He is currently serving as an Instructor in the Department of Civil and Mechanical Engineering at West Point.Joel Dillon, United States Military Academy
AC 2010-126: DESIGN OF A BUNGEE LAUNCH SYSTEM TO SUPPORT AKITE-BASED LIFTING PLATFORM FOR AERIAL IMAGINGIbibia Dabipi, University of Maryland, Eastern ShoreChristopher Hartman, University of Maryland, Eastern ShoreJames B. Burrows-Mcelwain, University of Maryland, Eastern Shore Page 15.355.1© American Society for Engineering Education, 2010Design of a Bungee Launch System to Support a Kite-Based Lifting Platform for Aerial Imaging Abstract Freshman engineering design students were given the problem of designing a bungee launch system to support a kite-based lifting platform for aerial imaging. The unique nature of the project lies in its support
team began research into the methodof rapid prototyping as a means of production. Rapid prototyping was selected because of theguaranteed tolerances and the efficient manner in which multiple hands-on models could beproduced. The team received funds from the Michigan Space Grant Consortium which were usedto finance the production of this project. The devices were tested against the original designspecifications to evaluate the practicality of rapid prototyping as a method of producing enoughdevices to outfit a classroom.IntroductionThe demand for science, technology, engineering, and mathematical (STEM) occupations hasbeen increasing, which means those interested in pursuing STEM related careers needs to beincreasing as well. Many adolescents
projects, graduate research, three master’s theses and invaluablecommunity exposure for STEM education. In addition to research opportunities, the work withJagBot resulted in the development of a 400-level senior elective engineering class in LabViewand provided justification for University funding of a laboratory based on National Instrumentsdata acquisition systems. This paper describes the design process and the contribution of thestudents to the final JagBot design.2. IntroductionRobots, as much as any other advance in science, epitomize progress. Robots have starred inmotion pictures, are routinely used in industry, and, although they have not become integratedinto society as fast as imagined by science fiction writers, they have been
Carolina. Dr. Conrad is a Senior Member of the IEEE and a Certified Project Management Professional (PMP). He is also a member of ASEE, Eta Kappa Nu, the Project Management Institute, and the IEEE Computer Society. He is the author of numerous books, book chapters, journal articles, and conference papers in the areas of robotics, parallel processing, artificial intelligence, and engineering education.Bruce Gehrig, University of North Carolina, Charlotte G. Bruce Gehrig is an Associate Professor in the Department of Engineering Technology and Contruction Management. His areas of interest/specialization are: Water Resources Planning and Management, Design and Construction Integration, and
AC 2010-61: A RISK ASSESSMENT TOOL FOR MANAGING STUDENT DESIGNPROJECTSHugh Jack, Grand Valley State University Hugh Jack is a Professor in the School of Engineering at Grand Valley State University in Grand Rapids Michigan. His interests include Product Design and Manufacturing Engineering, with a particular focus in control systems. Page 15.84.1© American Society for Engineering Education, 2010 A Risk Assessment Tool For Managing Student Design ProjectsAbstractMany design projects done by undergraduate students carry a high degree of risk because of inex-perience. In many cases students tend to ignore the
in Technology Education from Millersville University in 1971 and MS in Technology Education from the Pennsylvania State University in 1981. Currently, Mr. McFarland is the Machine Shop Manager in the Department of Physical Science at York College of Pennsylvania. Page 15.144.2© American Society for Engineering Education, 2010An Automated Bottle Filling and Capping Project for Freshman Engineering StudentsAbstract: All freshman engineering students at York College participate in a spring semesterdesign challenge as part of a year-long, two-course introduction to engineering. This
, Urology, Neurosurgery, ENT, Voice Restoration, and Ophthalmology. As the Director of Device Research for a major ophthalmic medical device company, he directed all research activities, the identification of new technologies, and the review of new business opportunities for the corporation. His responsibilities included transitioning projects into development and potential commercialization. He identified and successfully created research programs with leading academic institutions and formed strategic alliances with other high technology companies. In addition to his duties at UCSB, he remains active in the field of medical devices as a consultant for new ventures and investment
AC 2010-2201: EFFECTS OF STUDENT-CUSTOMER INTERACTION IN ACORNERSTONE DESIGN PROJECTChristopher Williams, Virginia Tech Christopher B. Williams is an Assistant Professor at the Virginia Polytechnic Institute & State University, where he directs the Design, Research, and Education for Additive Manufacturing Systems (DREAMS) Laboratory. His joint appointment in the Mechanical Engineering and Engineering Education departments reflects his diverse research interests which include layered manufacturing, design methodology, and design education. As a member of an instructional team that orchestrated a service-learning design project for the first-year engineering program, Professor
AC 2010-226: A HOLISTIC APPROACH FOR STUDENT ASSESSMENT INPROJECT-BASED MULTIDISCIPLINARY ENGINEERING CAPSTONE DESIGNMark Steiner, Rensselaer Polytechnic InstituteJunichi Kanai, Rensselaer Polytechnic InstituteRichard Alben, Rensselaer Polytechnic InstituteLester Gerhardt, Rensselaer Polytechnic InstituteCheng Hsu, Rensselaer Polytechnic Institute Page 15.42.1© American Society for Engineering Education, 2010 A Holistic Approach for Student Assessment in Project-based Multidisciplinary Engineering Capstone DesignAbstractA capstone design course involves multiple variables and complexities which make its teachingconspicuously challenging1,2; e.g., sponsors
AC 2010-2353: FIRST-YEAR AND CAPSTONE DESIGN PROJECTS: IS THEBOOKEND CURRICULUM APPROACH EFFECTIVE FOR SKILL GAIN?Daria Kotys-Schwartz, University of Colorado, Boulder DARIA KOTYS-SCHWARTZ is the Faculty Director for the Mesa State College-University of Colorado Mechanical Engineering Partnership Program and an Instructor in the Department of Mechanical Engineering at the University of Colorado Boulder. She received BS and MS degrees in Mechanical Engineering from The Ohio State University and a PhD in Mechanical Engineering from the University of Colorado at Boulder. Dr. Kotys-Schwartz has focused her research in engineering student learning, retention and diversity. She is currently
at Purdue University and Rose-Hulman Institute of Technology. Page 15.1312.1© American Society for Engineering Education, 2010 Using a Design Course to Augment Program Curriculum and Foster Development of Professional SkillsAbstractThis paper describes the structure of a recently reorganized senior design project coursesequence in the Department of Electrical and Computer Engineering at University of the Pacific.The paper focuses on the first course in a two course senior project sequence, a course that wasrecently reorganized with a view to improve student design and professional skills. Previously
Carolina; and at BPM Technology in Greenville, South Carolina. Dr. Conrad is a Senior Member of the IEEE and a Certified Project Management Professional (PMP). He is also a member of ASEE, Eta Kappa Nu, the Project Management Institute, and the IEEE Computer Society. He is the author of numerous books, book chapters, journal articles, and conference papers in the areas of robotics, parallel processing, artificial intelligence, and engineering education. Page 15.903.1© American Society for Engineering Education, 2010 NASA Senior Design: Systems Engineering and Reusable AvionicsAbstractOne
AC 2010-2185: ENHANCING THE UNDERGRADUATE RESEARCHEXPERIENCE IN A SENIOR DESIGN CONTEXTFarrokh Attarzadeh, University of Houston FARROKH ATTARZADEH earned his PhD in Electrical Engineering from the University of Houston in 1983. He is an associate professor in the Engineering Technology Department, College of Technology at the University of Houston. He teaches software programming, operating systems, digital logic, and is in charge of the senior project course in the Computer Engineering Technology Program. He has developed a concept referred to as EMFA (Electromechanical Folk Art) as a vehicle to attract young students to the STEM fields. He is the Associated Editor for student papers at
AC 2010-2250: SENIOR DESIGN: A SIMPLE SET OF REPORT OUTLINES ANDEVALUATION RUBRICSRegina Hannemann, University of Kentucky Page 15.1058.1© American Society for Engineering Education, 2010 Senior Design: A Simple Set of Report Outlines and Evaluation RubricsAbstractTo evaluate student performance in design courses is a challenging task. There are manydifferent tools available and there are also a variety of tools being described in the literature.Most of these research papers focus on specific topics such as self/peer evaluation, choice ofteams, choice of projects, and other very self contained aspects of design courses. This
Capstone Mechanical Engineering Design courses with Strong Industrial ParticipationAbstractThe objective of this paper is to present our findings and experiences in how to use industrialprojects successfully, especially in terms of guidelines for selecting projects and managing themthroughout the course. This paper will convey the impact of the changes to student learning andoverall experience of the faculty involved using industry projects.The goal was to significantly elevate the quality of project work undertaken, and this wasaccomplished by having teams of three or four students working under real world constraints oftime and budget, to produce a product or process that meet client's specifications. The first stepin this
from Stanford's Product Design program and has a M.A. in Education from the Stanford School of Education program in Learning, Design and Technology.Larry Leifer, Stanford University Larry Leifer is a Professor of Mechanical Engineering Design and founding Director of the Center for Design Research (CDR) at Stanford University. A member of the faculty since 1976, he teaches the industry sponsored master's course ME310, "Global Project-Based Engineering Design, Innovation, and Development;" a thesis seminar, "Design Theory and Methodology Forum;" and a freshman seminar "Designing the Human Experience." Research themes include: 1) creating collaborative engineering design environments
AC 2010-811: THE CURRENT STATE OF CAPSTONE DESIGN PEDAGOGYJames Pembridge, Virginia TechMarie Paretti, Virginia Tech Page 15.1217.1© American Society for Engineering Education, 2010 The Current State of Capstone Design PedagogyAbstractIn the fall of 2009, faculty involved in capstone design courses were surveyed to track trends inthe course structure and to explore current pedagogical practices. Where prior surveys probedcourse logistics, faculty involvement, project coordination, funding details, and industryinvolvement, this survey complements that work by also addressing the teaching beliefs andpractices of capstone faculty. The results provide a basis for
-recipient the NEA’s Bernard M. Gordon Prize for Innovation in Engineering and Technology Education, the Campus Compact Thomas Ehrlich Faculty Award for Service-Learning; the NSPE’s Educational Excellence Award.Steve Chenoweth, Rose Hulman Institute Of Technology Steve Chenoweth is an Associate Professor in the Department of Computer Science and Software Engineering at Rose-Hulman Institute of Technology. His principle areas of work relate to the design of complex systems and also these systems’ associated people concerns – such as how to get all the stakeholders in a large project to understand each another and the system being proposed. He was a visiting Fellow for EPICS in 2009-2010
project. OurNASA senior design project Mission Assurance Management Environment is to increase thereliability, availability, and safety of unmanned aircraft, by focusing on implementing the JetPropulsion Laboratory, JPL, Flight Project Practices, FPPs, and Design Practices, DPs, in anintegrated software environment. This project enables the students at California State UniversityLos Angeles to understand the function and scope of the spacecraft mission assurance activitiesand to make contribution to NASA ESMD. During the senior design project implementation,students work with their advisor and NASA expert to conduct the research on mission assurancemanagement and improve their related technical background of the project, including