Paper ID #41713Cultivating Scientific Communication Skills through Professional DevelopmentCourse Series for the Graduate CurriculumBritney Russell, University of ConnecticutAntigoni Konstantinou, University of ConnecticutAyah Abdallah, University of ConnecticutDr. Fayekah Assanah, University of Connecticut Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269-3247. Dr. Fayekah Assanah is an Assistant Professor in Residence in the Biomedical Engineering Department. She leads multiple initiatives in the university’s undergraduate and graduate curriculum and directs the
challenges in training interdisciplinary scholars; even in an established interdisciplinary program like IDR, developing interdisciplinary graduate students grapple with the influence of disciplinary microsystems– whether they were engineering or nonSTEM based, and often at the expense of their interdisciplinary work.Introduction or at least two decades, U.S. agencies have called for a sustained source of interdisciplinaryFresearchers who can integrate research methods, theories, vocabularies, and cultures across fields. Researchers and educators have responded, aligning graduate settings and curricula to develop this interdisciplinary professoriate[1], [2], [3], [20], [21
Paper ID #42829Development of a Climate Survey for Engineering Doctoral Students from anIntersectional Approach: First-Round Validity EvidenceDr. So Yoon Yoon, University of Cincinnati Dr. So Yoon Yoon is an assistant professor in the Department of Engineering and Computing Education in the College of Engineering and Applied Science at the University of Cincinnati, OH, USA. Dr. Yoon received her Ph.D. in Gifted Education, and an M.S.Ed. in Research Methods and Measurement with a specialization in Educational Psychology, both from Purdue University, IN, USA. She also holds an M.S. in Astronomy and Astrophysics and a B.S
throughout theentirety of the graduate student experience. Based on the assessment outcomes, the model is revised.Thus, the innovation lies in integrating the components into a department-wide model that (1) mutuallysupports an individualized, student-centered educational strategy and (2) deploys rigorous assessment toquantify the impact of our approach on students and faculty. We are undertaking a sweeping overhaul ofSTEM graduate education while documenting the process and outcomes, establishing the potential foradoption across our school and nationwide.The model is derived from the five principles of personalized learning by Watson and Watson[14] andcomprises the following key components: (1) establishing Instructional Goals for each student
broader context of higher education commercialization. Tas(2013), [7] emphasizes equal treatment and integration of international and domestic students inacademic and non-academic aspects, recommending the full incorporation of the InternationalStudent Office in all campus activities and the development of comprehensive orientationprograms by the ISO and Campus Life to foster diversity and enhance retention [7].Adapting to new academic environments, which requires negotiating multiple teaching methods,curriculum systems, and classroom dynamics, is one of the most difficult hurdles newinternational students face. Language obstacles, particularly in English proficiency, have beenshown in the literature to have a major impact on academic success and
about the online experience and the efficacy of it.In the further comments section of the survey that was distributed to respondents, they had manycomments about their graduate experience. The following comments were specifically related toonline coursework: Student 1: My wife is in the military so having a flexible 100% online curriculum was the most important to me. Student 2: Engineering online is a great program for engineers looking to complete a masters degree while working full time. I have really enjoyed it and can say nothing bad about the program. Student 3: This is my first online degree that I'm taking, so it is an interesting learning curve compared to physically being in class
, Formal MentorshipPrograms, Industry Internships, Professional Networking Events, Curriculum Integration, CareerCounseling Services, Cross-disciplinary Collaboration, Faculty Development, AlumniEngagement, Industry Research Collaborations, and Academic-Industry Forums), only tworesources, Industry Internships, and Industry Research Collaborations, stood out as 'Very helpful'(see Fig. 7). This finding reveals that faculty are interested in building stronger ties to industrybut are not able to realize them. For the remaining nine resources, eight of them were ranked as'Helpful' in the largest proportion, whereas one resource, Curriculum Integration, was considered'Moderately helpful' by the largest fraction of faculty.When asked about additional
Kanazawa Technical College and Future Faculty Fellow teaching First-Year Engineering at Purdue University. She focused on integrated STEM curriculum development as part of an NSF STEM+C grant as a Postdoctoral Research Assistant through INSPIRE in the School of Engineering Education at Purdue University. Her current research interests focus on pathways into engineering and identity development.Dr. Christina A. Pantoja, Campbell University Christina Pantoja is a postdoctoral researcher in the School of Engineering at Campbell University. Her research interests include career choices, pathways, and retention of women and underrepresented minorities in engineering. Her other interests include the topics of mentoring, job
solution and evaluate the desirability of the solution. 6. Deliver results from the study through a professionally structured document and an oral presentation based on the research to stakeholders.Capstone Project EvolutionWhile the capstone project was always a part of the program for over 20 years, the structure,format, and process has evolved. The program went through a complete curriculum update in2019-2020. Several courses were fully updated. One of the major changes in the capstone formatwith a unified syllabus, deliverables, and due date across all advisors. The second upgrade wasthe content (presentations and resources) and support system for the student. A staff capstonecoordinator support was added to help manage the LMS, student
Paper ID #43390Increasing Teaching Efficacy in Engineering Graduate Students through theDevelopment and Facilitation of Summer Middle and High School STEMExperienceDr. Jamie R. Gurganus, University of Maryland, Baltimore County Dr. Jamie Gurganus is a faculty member in the Engineering and Computing Education Program. She is the Associate Director STEMed Research in the College of Engineering and Information Technology (COEIT). She also serves as the Director for the Center for the Integration of Research, Teaching and Learning (CIRTL) in the graduate school. Her research is focused on solving problems relating to
promising findings of this research and the encouraging feedback of the student community motivated him to pursue this line of research in his NSF CAREER award in 2017. Since then, he has built a coalition within the university to expand this work through multiple NSF-funded research grants including IUSE/PFE: RED titled ”Innovation Beyond Accommodation: Leveraging Neurodiversity for Engineering Innovation”. Because of the importance of neurodiversity at all levels of education, he expanded his work to graduate STEM education through an NSF IGE grant. In addition, he recently received his Mid-CAREER award through which, in a radically novel approach, he will take on ambitious, transdisciplinary research integrating
effectively ona team, integrate information from multiple sources, communicate with written and visualmaterial, and make connections across disciplines 18 .PBL is not inherently transdisciplinary or convergent, but PBL can be used to teach and addressconvergent problems. While PBL is not the only way to learn convergence methodologies, it canbe an efficient “means” to the “end” which is understanding and implementing convergencemethodologies. It emphasizes the process of question identification and framing as much asproblem solving, encouraging students to iterate and seek feedback, and to reflect on theirapproach and proposed solution. Additionally, outcomes of PBL are similar to the skills neededfor the future of convergence research in industry
2021 and spring 2023. In the NRTCapstone course, trainees built upon the systems thinking framework taught in the IntegratedFEW Systems course. The NRT Capstone integrated theory and practice. Students worked ininterdisciplinary teams and learned how to integrate research across disciplines. For a finalproduct, students completed an original interdisciplinary research paper in one of the NRT threeresearch themes: innovations for soil, water and microbial systems in the face of drought;hydrologic science and water conservation systems for efficient food production; and anaerobicbioreactors to transform animal waste into usable energy, water, and/or fertilizer.NRT students could also work towards a graduate certificate on Innovations at the
education.At the beginning of the 2023-2024 academic year, two professors, Professor A and B, decided topilot a new STEM Ed version of the course. Three engineering education students, Students A,B, and C, enrolled in the seminar course. A description of each is provided in Table 1. Table 1. Description of each participant in the STEM Ed seminar course. Participant Description Professor A Professor A is a tenured faculty member who is the engineering education Ph.D. program coordinator and director of the Integrated STEM Education Research Center (ISERC). Professor B Professor B is an early-career, tenure-track faculty member who completed the STEM education Ph.D. program at Louisiana Tech University in
program and their current use of PM skills?Literature ReviewProject management is valued by employers [7], specifically in STEM [3]. Research focused onthe development and implementation of PM training suggests that integrating PM training intothe undergraduate curriculum can be beneficial for prepping their future career [8], [9], [10],[11], [12]. Specifically, some studies highlighted their curriculum designs in helpingundergraduate students to gain PM experiences [8], [9], [10], and assess and understand students’learning experiences with PM knowledge [9], [11]. However, there’s a lack of studies that werefocused on STEM (e.g., software engineering [9], chemical and biological engineering [10]).Castañón–Puga et al. [9] assessed students' user
startedlooking into the feasibility of making the graduate engineering program more accessible. Thiswould not only allow us to meet the growing demand for engineers in West Michigan, but itwould be well aligned with our program’s student-centric focus. To prepare the students for thegraduate-level engineering work, an exhaustive list of prerequisite undergraduate classes thatstudents must take has been approved. While each applicant’s curriculum is tailored, GVSU’sSchool of Engineering developed a general plan to onboard students from a variety of non-engineering undergraduate backgrounds. Applicants are granted conditional admission to thegraduate program predicated on completing the prerequisite classes with a B or better grade.These plans allow the
Higher Education 25, 255-26,(2000).[5] G. E. Becker, J. Cashin, T. T. Nguyen, & P. Zambrano. Expanding Integrated Competency-Focused Health Worker Curricula for Maternal Infant and Young Child Nutrition. EducationSciences, 12(8), 518, 2022.[6] D. Ifenthaler & R. Hanewald. Digital knowledge maps in education. Technology., 2014.[7] W. W. Boehm. Curriculum Study. Social Casework, 37(7), 348-349, 1956.[8] M. Roach and H. Sauermann. “The Declining Interest in an Academic Career” PLOS ONE,12(9), 2017, September. Available at SSRN: https://ssrn.com/abstract=2992096or http://dx.doi.org/10.2139/ssrn.2992096.[9] B. L. Benderly, B. L. (2013). THE NEW Ph. D. ASEE Prism, 22(5), 31, 2023.[10] B. Hynes, Y. Costin, and I. Richardson. "Educating for STEM
in order to assess and organize an overall approach to Smart Manufacturing training" [17]• Knowledge transfer on cybersecurity threats o "Overall, the paper and the proposed curriculum hold the promise of contributing to the ongoing effort to bridge the knowledge/skill gap by educating the future engineering and security workforce on protecting the ICS and CI from cybersecurity threats and attacks" [23]• Project management o "A key feature to the Artemis ground operations at KSC is the deployment of Artemis and the Exploration Ground Systems (EGS) teams working together to ensure that assembly and integration handoffs are well defined and coordinated. This
certified as an EFL and ESL teacher as well as a School Principal. Ari’s research and language revitalization interests include Mikasuki, Salish Ql’ispe (aka Salish-Pend d’Oreille, Montana Salish, and Flathead Salish) and Safaliba. His ethnographic work documents situated practice in grassroots policy initiatives and school-based activism among the Safaliba in rural Ghana. His language documentation includes conceptual metaphors and formulaic language in Salish Ql’ispe and Safaliba. He also explores applications of task-based language teaching in the pedagogy of revitalization. His practitioner papers analyze integrated content and language instruction, academic English instruction for graduate students, and asset-based