Paper ID #42229Exploring the Relationships between Artistic Creativity and Innovation Attitudesin Engineering StudentsDr. Azadeh Bolhari, University of Colorado Boulder Dr. Bolhari is a professor of environmental engineering in the Department of Civil, Environmental and Architectural Engineering (CEAE) at the University of Colorado Boulder. Her teaching focuses on fate and transport of contaminants, capstone design and aqueous chemistry. Dr. Bolhari is passionate about broadening participation in engineering through community-based participatory action research. Her research interests explore the boundaries of engineering
be dynamic andinterdisciplinary, reflecting the evolving landscape of this fabrication technology[62][63][64][65]. As the field of AM continues to expand across various industries, educationalinstitutions will increasingly emphasize hands-on experience with cutting-edge AM technologies.This applied approach will involve not only operating AM machines but also understanding theentire steps of the production technologies, from design, simulation, material selection, and post-processing, to inspection and quality control.Furthermore, the integration of AM education into traditional engineering curricula is expectedto grow from technical courses to capstone projects [66][67]. Engineering and technologystudents will be exposed to processing
project," Journal of Chemical Education, vol. 99, no. 6, pp. 2417-2424, 2022, doi: 10.1021/acs.jchemed.1c00817.[13] A. Giddens, The constitution of society: Outline of the theory of structuration. Berkeley, CA: University of California Press, 1984.[14] W. H. Sewell, Jr., "A theory of structure: Duality, agency, and transformation," AJS, vol. 98, no. 1, pp. 1-29, 1992, doi: 10.1086/229967.[15] M. Emirbayer and A. Mische, "What is agency?," AJS, vol. 103, no. 4, pp. 962-1023, 1998. [Online]. Available: https://www.jstor.org/stable/10.1086/231294.[16] V. Svihla, T. B. Peele-Eady, and A. Gallup, "Exploring agency in capstone design problem framing," Studies in Engineering Education, vol. 2, no. 2, pp. 96–119
projects” [28, p.1 ], or the “procedure of automatic extraction ofdata from websites using software” [34], or “an interactive method for website and some otheronline sources to browse for and access data” [35]. Other definitions also extend thesedefinitions by suggesting the collection of unstructured data from the web into structured ones in“a central database or spreadsheet” [36]. Web scraping is also referred to as web crawling, butsome argue that web scraping is the extraction of data from a website, whereas web crawling isthe identification of target Uniform Resource Locator (URL) links [34]. Broucke et al. extend onthis and suggest that the crawling term refers to the ability of the program to navigate web pageson its own with the
and Computer Science at Ohio Northern University, where he currently teaches first-year programming and user interface design courses, and serves on the college’s Capstone Design Committee. Much of his research involves design education pedagogy, including formative assessment of client-student interactions, modeling sources of engineering design constraints, and applying the entrepreneurial mindset to first-year programming projects through student engagement in educational software development. Estell earned his BS in Computer Science and Engineering degree from The University of Toledo and both his MS and PhD degrees in computer science from the University of Illinois at Urbana-Champaign.Dr. Micah Lande, South
been used by researchers to understand how teaching andlearning occur in classrooms [22]-[27]. In the context of engineering education, classroomobservations have become more common to conduct research related to curricular practices [28].As our research questions centered on how engineering practices were taught and understandinghow classroom time was utilized, classroom observations served as an ideal method throughwhich to collect data.To guide the data collection, the project leadership team (EM, LL, JLM, and SD) developed anditerated an observation protocol. The observation protocol consisted of 35 practices, which weredrawn from literature on engineering competencies [1], [5], insights from student interviewsprobing the emphasized skills
to four-year universities to studyengineering bring a diverse range of experiences and perspectives, which greatly contribute to thefield of engineering and help national and regional workforce development. However, thesestudents face specific challenges, referred to as the vertical transfer penalty, when they transfer tofour-year universities. This can lead to lower completion rates for community college starterscompared to students who start at four-year universities. The issue seems to be related to factorsregarding the students' experiences, institutional characteristics, and geographic location. Thisstudy marks the initial stage of a comprehensive research project aiming to compare historicaltransfer student data over the past two
was correlated negatively with intercultural growth.Awareness of professional growth Of the 42 students in the 2022-2023 cohort, 11 not only took courses in their secondlanguage and in their engineering discipline during the Fall semester of their study abroad butalso availed themselves of the opportunity to complete credit bearing research projects in atechnical institute at their various partner universities; 7 more chose a research project in auniversity or private institute instead of an internship in a company for the second half of theiryear abroad. Doing research in a team was new for some. JD, for example, a student with a solidacademic record of As, Bs, occasional Cs and a 104.85 IDI score prior to his abroad sojournrelated
test, while there was nostatistically significant difference between the two interventions for the retention test. The VRlesson was also found to result in higher emotional arousal and lower cognitive engagement. Theauthors suggested that the excessive emotional arousal caused by VR high immersion distractsthe learner from cognitive processing of the information. On the other hand, Lai et al. resultsindicated that students using AR perceived a significantly lower extraneous cognitive loadcompared to those who learned with conventional multimedia [49].There were mixed results in terms of student preference. While students preferred the AR morein [37] and [49], projection-based VR with TV screens was found to be preferred by students inthe study
and ability to teach course content. Instead, the SPVEL connects students’ 1)appreciation for laboratory discipline content and relevance to their career aspirations, 2)engineering role identity development as a function of participation within the lab, and studentsociocultural identities (race, ethnicity, and gender).Research QuestionSPVEL was used to answer two research questions. How do student’s sociocultural identitycharacteristics relate to their perceptions of value in a virtual engineering lab? How are students’perceptions of virtual lab value related to the sociocultural identities and lab report grades?Research Methodology and EnvironmentThis study was conducted in a capstone senior Mechanical and Aerospace engineering
].Survey Design and MethodologyThis research project was reviewed and determined to be exempt by our college’s InstitutionalReview Board (IRB). Our experimental setup consisted of two groups of students at a largeMidwestern R1 University, in an undergraduate, pre-capstone SE course. We utilized a quasi-experimental pretest-posttest hybrid between groups and within groups design for this study. Thecontrol and treatment groups consisted of successive cohorts of sophomores/juniors from CS andComputer Engineering, one section each. This SE course was a mandatory component of theiracademic progression towards earning their degree.The treatment group was taught using PI while the control group received instruction throughtraditional lectures. The
classstructure and teaching practices allows researchers and instructors to determine how to augment aclass for a clearer and easier learning experience.There are many related articles that focus on at least one of the domains of learning for engineeringstudents; however, most have different focuses or are not directly applicable to this paper’sresearch. For example, many related studies were testing or creating a tool used to evaluate a class'sability to teach with one or more of the domains, versus testing how to better teach one or all ofthe domains or discover how students learn with each domain [8-13]. One of these studies createda teaching template for schools so they are more aware of what engineering students should learnduring their capstone
PhD student in the Department of Mechanical Engineering at UBC. Her research focuses on equity issues in engineering education, particularly looking at the impacts of engineering outreach programs on historically marginalized groups in STEM.Shouka Farrokh, University of British Columbia Shouka Farrokh is an undergraduate student pursuing Psychology at The University of British Columbia. She contributes as a research assistant in Engineering Education projects focusing on STEM Outreach initiatives.Dr. Katherine Lyon, University of British Columbia Katherine Lyon is Assistant Professor of Teaching in the Department of Sociology at the University of British Columbia. Katherine’s research merges sociology of education
study created ateaching template for schools so they are more aware of what engineering students should learnduring their capstone research [15]. Another study tested the program EvalTOOLs 6 to determinehow well a class performed in connecting to each of the three domains and how it may be helpfulfor determining which domains need more development [13]. A related study tried to evaluateeach hierarchical level with an analysis of students’ grades [6]. Other studies attempted to developnew analytic tools to evaluate students learning with the cognitive domain [7], [14].Another related study focused on testing a few hierarchical levels instead of reviewing learningthrough all of the hierarchical levels of the cognitive domain [8]. One article