c American Society for Engineering Education, 2013 Teaching Engineering Design Concepts Through A Multidisciplinary Control ProjectAbstractThis paper described the design and the implementation of a multidisciplinary project in two-sequential control courses to reinforce students’ understanding of engineering design conceptsfrom a system point of view. Such a project had two phases which corresponded to the twocourses. In the Phase I of the project, a vague problem idea was given, which required thestudents to design a (multidisciplinary) mechatronics system. The students formed in teams andcollected information to further define the project before drawing their first drafts. Multiple ideaswere
and practice for senior projects. In our campus, senior students are required topresent and demonstrate their senior projects in the senior project fair, in which those projectswere evaluated by the engineering technology faculty members and other senior students.V. Future Improvement Based on our experiences from teaching DSP courses, we felt that in Portion 1, all thelectures containing well-established topics including the digital spectrum, the FIR and IIR filterimplementations and developed laboratories are suitable. Even though the topics of DFT, FFT,bilinear transform method and optimum design seemed challenging to our technology studentsdue to the demand of their math proficiency to understand certain subjects, we still
Paper ID #6793Innovations in Remote Laboratories & Simulation Software for Online andOn-Site Engineering StudentsDr. Jodi Reeves, National University Dr. Jodi Reeves is an associate professor in the Department of Applied Engineering at National University in San Diego, CA. She teaches courses in design engineering, engineering management, electric circuits, and other applied engineering courses. She is also the lead faculty for the Data Analytics program in the School of Engineering, Technology, and Media at National University. Prior to academia, she worked for almost ten years as a quality control manager
Metrology CoursesAbstractMeasurement scientists work in calibration laboratories throughout the world. Yet, there are fewuniversity level courses available that cover the critical topics needed for performing andanalyzing precision measurements – at the desired level. Many continuing education courses ofthis nature are taught by National Metrology Institutes (NMIs) and original equipmentmanufacturers (OEMs) of precision measuring equipment and measurement standards. Whatoften happens in the measurement community is that subject matter experts and scientists whobest know about measurements are asked to teach courses and tutorials, but most do not have abackground in educational models or adult education principles.Over the past 3 years, the National
study is to determine whether these skills have been carried over into the twosemester capstone design course. If the earlier course is effective in teaching experimentaldesign and laboratory techniques, this should translate to more sophisticated experimental designand execution in the capstone design course. To determine whether these concepts have beenretained in the capstone design course, design reports were examined to note the instances ofspecific Measurements and Analysis topics in the design projects. Reports were examined forstudent populations that had taken the revised course and were compared to reports for studentswho had taken the original course with two different instructors. Both the number of topicsaddressed and the number of
- plementing undergraduate laboratory and lecture courses that address the evolving needs of biomedical engineers, and managing the ABET assessment program for the Weldon School of Biomedical Engineer- ing.Dr. Marcia Pool, Purdue University, West Lafayette Dr. Marcia A. Pool is an Instructional Laboratory Coordinator in the Weldon School of Biomedical En- gineering at Purdue University. She is responsible for overseeing and assessing junior level laboratories, bioinstrumentation and biotransport, and is involved with teaching and mentoring students in the Senior Design Capstone course. Recently, she has worked with colleagues to plan and implement a problem- based learning approach to the biotransport laboratory to improve
Paper ID #7273Laboratory Experiment in Engineering Materials for Upper-Level Under-graduate and Graduate StudentsDr. David R Veazie P.E., Southern Polytechnic State University Dr. Veazie received his B.S. in Mechanical Engineering from Southern University in 1986, and his M.S. and Ph.D. in Mechanical Engineering from Georgia Tech in 1987 and 1993, respectively. He worked for AT&T Bell Laboratories in New Jersey as a Member of the Technical Staff and was a National Research Council (NRC) Postdoctoral Fellow at the NASA Langley Research Center. In 1994, he joined Clark Atlanta University’s Department of Engineering, and
class or handling check-out procedures for students who do the experiment at home, andorganizing staff or TA help during the experiment.This model was tried as part of an NSF CCLI grant at a large ECE program across 15 differentcourses, 37 instructors, and 2700 students1-3. The corresponding experiments include ones oncircuits, signals and systems, electromagnetic, and controls. Experience gained during this grantperiod helped to develop implementation strategies and best practices to address the facultyconcerns and logistics challenges4. To be successful, the model requires an established set ofexperimental modules using common platforms, laboratory staff support, teaching assistantsupport, a sufficient number of experimental set-ups for each
Asynchronous Passive Optical Networks. He remains an active consultant in radio frequency and analog circuit design, and teaches review coursed for the engineering Fundamentals Examination.Dr. Thomas F. Schubert Jr. P.E., University of San Diego Thomas F. Schubert, Jr. received his B.S., M.S., and Ph.D. degrees in electrical engineering from the University of California, Irvine. He is currently a Professor of electrical engineering at the University of San Diego, and came there as a founding member of the engineering faculty in 1987. He previously served on the electrical engineering faculty at the University of Portland, Portland OR and Portland State University, Portland OR and on the engineering staff at Hughes Aircraft
radio communications. From 1976 to 1978 he was at Starkey Labs. Inc., Minneapolis MN, as a Staff Re- search Engineer, working on applications of digital signal processing for the design of advanced hearing instruments, and for their automated evaluation. Since 1979 he has been on the faculty at Virginia Poly- technic Institute and State University, Blacksburg VA, currently as Professor of Electrical and Computer Engineering and Director of the Digital Signal Processing Research Laboratory (DSPRL). Page 23.290.1 c American Society for Engineering Education, 2013 Closing the Design
. Ferri, Georgia Institute of Technology Dr. Ferri received his BS in Mechanical Engineering from Lehigh University in 1981 and his PhD in Mechanical and Aerospace Engineering from Princeton University in 1985. He has been a faculty member in the School of Mechanical Engineering at Georgia Tech since 1985 and currently serves as the Associate Chair for Undergraduate Studies in Mechanical Engineering. He is a Member of ASEE and a Fellow of ASME.Prof. Kenneth A Connor, Rensselaer Polytechnic Institute Kenneth Connor is a professor in the Department of Electrical, Computer, and Systems Engineering, where he teaches courses on plasma physics, electromagnetics, electronics and instrumentation, electric power, and
Paper ID #8120Getting More Learning From Labs - Six Principles to Build Understandingand SkillDr. Clark Hochgraf, Rochester Institute of Technology (CAST)Prof. Richard Cliver, Rochester Institute of Technology (CAST) Richard C. Cliver is an Associate Professor in the department of Electrical, Computer and Telecommu- nications Engineering Technology at RIT where he teaches a wide variety of courses both analog and digital, from the freshman to senior level. He was the recipient of the 1998 Adjunct Excellence in Teach- ing Award, the recipient of the 2002 Provost’s Excellence in Teaching Award and a finalist in the 2009
to experience a specific type ofrobot, and most institutions cannot afford a complete (or even partial) collection of robots forlaboratory exercises. Therefore, many approaches for virtual robotic exposure have beendeveloped, including virtual environments for teaching the kinematics and dynamics of robots,software environments for visualizing a wide range of robot manipulators, and simulationenvironments for showing how these robots behave in the real world, some with an emphasis onmultiple robotic configurations. Simultaneous to the development of various instructionalrobotics laboratories, there has been a development of strategies in educating students remotelythrough what has been labeled as eLaboratories[3][4]. The motivation for such
Brigham Young University, 2nd Edition, Brigham Young University Press, 1995.4. Ortiz, L. E. and Bachofen, E. M., “An Experience in Teaching Structures in Aeronautical, Mechanical and Civil Engineering, Applying the Experimental Methodology,” Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition, Session 2526.5. Abdulwahed, M. and Nagy, Z. K., Applying Kolb’s Experiential Learning Cycle for Laboratory Education, Page 23.363.12 Journal of Engineering Education, July 2009, pp. 283-294.6. Wyrick, D. A. and Hilsen, L., “Using Kolb’s Cycle to Round Out Learning,” 2002
perform experimental research and encouraged their matriculation to graduate school. Dr. Traum also serves as the founding Chief Technology Officer at EASENET, a start-up renewable energy company he co-founded with his former students to commercialize residential scale waste-to-energy biomass processor systems.Dr. Vincent ”Vince” C Prantil, Milwaukee School of Engineering Dr. Vincent Prantil earned his BS, MS, and PhD degrees in Mechanical And Aerospace Engineering at Cornell University. He has worked as a senior member of technical staff in the Applied Mechanics and Materials Modeling Directorates at Sandia National Laboratories in Livermore, California where he was a co-recipient of the R&D100 Award for
Paper ID #6248Updates to a Sequence of Thermodynamics Experiments for Mechanical En-gineering Technology StudentsMr. Roger A Beardsley PE, Central Washington University Roger Beardsley PE is an associate professor of Mechanical Engineering Technology at Central Wash- ington University in Ellensburg WA. Mr. Beardsley teaches undergraduate courses in thermodynamics, heat transfer, fluids, and machine design. His professional interests include energy conversion, renewable energy and sustainability issues. Page