AC 2012-4880: MEASURING ENGINEERING STUDENTS’ CONTEXTUALCOMPETENCEDr. Hyun Kyoung Ro, Carnegie Mellon University Hyun Kyoung Ro is a Research Designer and Analyst in the Institutional Research and Analysis at Carnegie Mellon University.Dr. Lisa R. Lattuca, University of MichiganDr. Dan Merson, Pennsylvania State University Dan Merson is a Postdoctoral Fellow for the Center for the Study of Higher Education and the College Student Affairs program at Penn State. He received his Ph.D. in higher education from Penn State in the summer of 2011. While at Penn State, he primarily worked on the NCAA-funded Student-Athlete Climate Study (SACS), a nation-wide project to assess student-athlete’s perceptions and experiences
the fourth day, the studentswatched an ABC News Nightline program titled “Deep Dive.”29 A “think-tank” company,IDEO, was asked by the ABC program‟s producers to develop a new design for a shopping cartwithin one week – an extraordinarily tight timeline. In camp, a team assignment was givenwherein each student identified the core competencies used by IDEO, the methodology followedby IDEO, and potential problems with the final cart design (likely due to the short timeline). Theproblems identified by each team were collected, and using the list, a capstone team project wasassigned wherein the students had to re-design IDEO‟s new shopping cart while using the entirecreative problem solving method. The students were given 24 hours to complete the
entrepreneurial mindset.Entrepreneurially minded engineers (EMEs) are characterized as this emergent class of engineersand act as the drivers of U.S. innovation and competitiveness. EMEs have not necessarily starteda new business (although they may have), they are, most often, working in established small- andmedium-sized firms, many work in Fortune 1000 firms [1].The Kern Entrepreneurship Education Network (KEEN), a collection of twenty-one privateengineering schools across the US, in partnership with Target Training International (TTI), aworldwide leader in personal and professional assessments, is undertaking the KEEN – TTIPerformance DNA Assessment Project. Three well-known and vetted assessments are beingused to identify current students’ skills
. Nonetheless, if we are pragmatic anddesire to do a better job in equipping our students with the “tools of the trade” thenwe need to alert our graduate students( the future engineering teachers) to the need ofdeveloping proper and enduring connections with industries in their locale, andeventually have a mutually beneficial relations with the industrial sector; not so muchto supplement their income, but, principally, to be able to reach the broader goal, i.e.,to gain valuable experience and be truly involved in real engineering.iii) Third, reaching out to the industrial sector and engineering services in the Region,and striving to form symbiotic partnerships between local industry and academiathrough: capstone projects, theses work with practical
AC 2012-3769: ENGINEERING AS A CAREER CHOICE AMONG RU-RAL APPALACHIAN STUDENTSMr. Matthew Boynton P.E., Virginia Tech Matthew Boynton is a doctoral student in the Engineering Education Department at Virginia Tech. Before entering Virginia Tech, he earned a B.S. and M.S. in civil and environmental engineering, and an Ed.S in instructional leadership from Tennessee Technological University. His engineering work experience includes work within a rural telecommunications service provider and an environmental consulting firm. While working toward his M.S. and Ed.S, Boynton worked with the Extended Education Department at Tennessee Technological University teaching Project Lead the Way engineering courses in rural high
I/Obox simulator, and the other with the actual work-cell. Valuable demos also strengthened thelearning experience.In the near future, the author plans to incorporate the vibratory bowl feeders (under a secondwork-cell – where the students will actually wire the entire cell), and a state-of-the-art machinevision system (in place of an outdated one) into his laboratories. The work-cell will sort screwsdelivered by the feeder. Efforts for this new cell development have already begun. Additionalfuture projects may involve addition of DELMIA Robotics Virtual Simulation tool to this courseas well as the capstone project course (ENGR 4950 – Integrated Engineering Design) for seniors
, graphic arts, politics, music, and computer technology have always been Preston Jay Mendoza’s main interests. His undergraduate years have been a long filtration of those many interests, which ulti- mately led him to enroll in the Computer Information Systems program at National University. From this program, he further enhanced his business and computer skills in project management and data manage- ment systems. These skills were used to develop the capstone project, which includes the corresponding paper. Page 25.865.1 c American Society for Engineering Education, 2012
• TECH 443 - Engineering Economy • TECH 484 – Energy Management • TECH 496 - Industrial Project Management (Capstone experience) • Three Technical Electives related to energy and the environmentIt should be noted that the Technology degree was not developed with the intent of obtainingeither ATMAE or ABET accreditation, however, in the future this may be an option with minoralterations to the program. In addition to the three major curricular paths that were developed,the group also developed two undergraduate minors; however, other minors are planned or incurrent process. The goals of the minors are introduce students from various unrelated majors tothe area of energy and the environment or “green
consulting, he currently teaches engineering design at the cor- ner and capstone levels. His research focus in on scaling innovative engineering pedagogies to suit large classes, and his teaching integrates the theories of Vygotsky, Kolb, Papert, Perry, and Pugh.Dr. Robert Irish, University of TorontoMs. Patricia Kristine Sheridan, University of Toronto Patricia Kristine Sheridan is a Ph.D. candidate with the Institute for Leadership Education in Engineering at the University of Toronto. She holds a B.A.Sc. and M.A.Sc. in mechanical engineering from the University of Toronto. She is a member of the teaching team and a course developer for the Praxis cornerstone design courses
Wichita State University. He received his B.S., M.S., and Ph.D. degrees from Oklahoma State University. In his 38-year teaching career, he has taught a wide range of industrial engineering courses and currently directs the department’s capstone design experience. His research interests are in systems engineering, decision analysis, and engineering education. Page 25.1263.1 c American Society for Engineering Education, 2012 Team Decision Skills Development with MBTI © Step IIAbstractAs part of an Engineer as Leader course, students learn to dynamically take leadership
the labs and hands-onexperiences.This paper focuses on the new sophomore level design course which has been piloted as anabbreviated ten-week quarter long version in Autumn 2011 and Winter 2012. The sophomorecourse fills, in part, the major gap in design education that exists between the fundamentals ofengineering course sequence (and its honors equivalent, both of which serve as a prerequisite tothe major) and the senior-year capstone design course. And while the first year course sequencesinclude a design-build project, there exists a wide variance in the machine skills and experienceof entry-level Mechanical Engineering students. This new sophomore course attempts to level-set the practical knowledge of machining among students in addition
AC 2012-5438: ETHICAL ISSUES AWARENESS FOR ENGINEERS INPRACTICEDr. A. Dean Fontenot, Texas Tech University A. Dean Fontenot directs a professional development center for K-12 teachers as part of the Texas STEM (T-STEM) initiative in order to bring about educational reform in secondary schools. The Texas Tech T-STEM Center focuses on project-based learning with the integration of the engineering design process. As Senior Director, she has brought together three Texas Tech professional development centers that have a history of training teachers, and built partnerships with five Educational Service centers as well as other organizational and industry partners who help implement the professional development training
AC 2012-4849: HIGH SCHOOL STUDENT ENGINEERING DESIGN THINK-ING AND PERFORMANCEProf. Kurt Henry Becker, Utah State University Kurt Becker, Ph.D., is a professor and the Department Head of Engineering and Technology Education. He is the Co-principal Investigator for the National Science Foundation (NSF)-funded National Center for Engineering and Technology Education (NCETE). His areas of research include adult learning cognition, engineering education professional development, and technical training. He has extensive international experience working on technical training projects funded by the Asian Development Bank, World Bank, and U.S. Department of Labor, USAID. Countries where he has worked include Bangladesh
related to the lack of good engineering practice and experience regardless of nationality.College-company interpersonal connection: bridging the cultural differencesA meaningful and valuable strategic connection was made between Gulfstream and EmbryRiddle stemming from very serendipitous beginnings. A student-teacher connection formedduring a capstone design course in 1986 led to a professional relationship maturing over theensuing years through intermittent but substantive communications. After 13 years in theprofession the alum, Mr. Tim Farley, was working as director project engineering for Gulfstreamwhen he approached his former professor, Prof. Jim Ladesic, with the notion of cultivating arelationship between Gulfstream and ERAU. Like most
Fe, NM: The SAR Press, pp. 117-141.47. Mikic, B. and Grasso, D. (2002). Socially-Relevant Design: The TOY-Tech Project at Smith College. Journal of Engineering Education, 91: 319-326.48. Ellis, G. W., Mikic, B., & Rudnitsky, A. (2003). Getting the "big picture" in engineering: Using narratives and conceptual maps. ASEE Conference Proceedings.49. Riley, D. Employing Liberative Pedagogies in Engineering Education. Journal of Women and Minorities in Science and Engineering, 9 (2): 137-158 (2003).50. Howe, S., Moriarty, M.A., and Errabelli, A. (2011). Transfer from Capstone Design: A Model to Facilitate Student Reflection. ASee Conference Proceedings, 2011.51. Cech, E.A. (2010). Trained to Disengage? A Longitudinal Study of
for improvingretention include several best-practice components, namely: 1) exposure to engineering practice through two new courses employing multidisciplinary projects6, presentations by practicing engineers, presentations by students involved in co- op education, and presentations by senior capstone design project students; 2) the development of the faculty mentoring program for first-year students; 3) the development of a peer advisor mentoring program for first-year students; 4) the development of an industrial mentoring program for first-year students.We are implementing all four initiatives, and this paper focuses on initiative #4, industrialmentoring.1.3 Other Industrial Mentor ProgramsFreshman
well as two- and four-year private and public colleges and universities in the states of Washington, California, Florida, Indiana, Illinois, Ne- braska and Virginia in diversity, STEM education, organizational culture, and leadership strategies. Gwen has conducted more than 30 workshops and presentations on cultural, racial, and generational diversity; assessment, evaluation, and accreditation; teaching and learning; and leadership. Lee-Thomas teaches organization administration and culture and the project management capstone course as an Adjunct at Old Dominion University in the graduate program of the Darden College of Education. Prior to ODU, she was the Executive Assistant to the President from 2004 2005 and
- Engineering Economy TECH 484 – Energy Management TECH 496 - Industrial Project Management (Capstone experience) Three Technical Electives related to energy and the environment2.3 Student Recruitment Page 25.1008.4Due to the State of Illinois rules, all new programs must receive Board of Education approval,and as such, the two new Liberal Arts programs that were created have just received approval tobe offered. The new Technology program received approval last year, and is in its first year ofbeing offered. Recruiting for these programs is relatively simple; they are selling themselves!The
that is aligned withresearch-based educational practices was used to evaluate the instructional quality of the module.Project DesignThe project provided targeted professional development and a research experience for twocohorts of secondary math and science teachers from the GCS Central Region. Project activities Page 25.936.3included innovative strategies to strengthen educator skills in teaching hands-on NASA-relatedSTEM content. Teachers engaged in Earth System Science research under the mentorship ofexperienced STEM and education graduate students and designed innovative inquiry-based EarthScience teaching modules that are aligned with
coverage of these important broader considerations, andthus to provide opportunities for broader ways of thinking in engineering education. Commonapproaches to teaching engineering design incorporate some of these ways through project-basedlearning, which finds instantiation in senior capstone design projects [6, 7], first-year cornerstonedesign projects [7], and service learning [7, 8]. Closely related, the Aalborg problem-based learning(PBL) model also focuses on contextualizing learning and problem-solving [9]. Litzinger et al.’s[10] discussion of expertise and engineering education emphasizes the importance of the “context-rich, multifaceted problems” commonly embedded in all of these approaches.Empirical research on engineering design
AC 2012-4060: IDENTIFICATION WITH ACADEMICS AND MULTIPLEIDENTITIES: COMBINING THEORETICAL FRAMEWORKS TO BET-TER UNDERSTAND THE EXPERIENCES OF MINORITY ENGINEER-ING STUDENTSMs. Kelly J. Cross, Virginia Tech Kelly earned her bachelor’s of science in chemical engineering from Purdue University in 2007. She earned her master’s of Science in materials science and engineering from the University of Cincinnati. Cross is currently in the second year of the engineering education Ph.D. program at Virginia Tech and is currently involved with multiple educational research projects with faculty at Virginia Tech.Dr. Marie C. Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of engineering education at Virginia Tech
scheduled days. The courses selected for the study at the institution areidentified as i) a freshman design class teaching computer-aided design, ii) a sophomoreintroductory circuits laboratory, iii) a junior design class in controls and electronics, and iv) asenior capstone project class.On the day of the module delivery, the case study was first introduced to students through a shortpresentation by the instructor assigned to this role during which the one-page case study wasread aloud. It is also suggested to include a brief, relevant video clip of a key interview or newssegment on the subject to supplement the text. Whenever possible, contrasting viewpoints bydifferent stakeholders can also be expressed through the selection of video clips to
AC 2012-5085: RESPONSES TO AN UNFAMILIAR THING: HOW LEARN-ING ABOUT A STRUCTURAL SCULPTURE CAN MAKE IT MORE AP-PEALINGDr. Charles E. Riley, Oregon Institute of Technology Charles Riley has a background in transportation structures and structural mechanics. He teaches across the curriculum from the interdisciplinary freshman experience through the mechanics sequence, project management, structural design, and into the senior capstone. His interests in engineering education are varied, but are ultimately focused on excellence in the classroom and student retention (both retaining them in the program and having them retain information!).Dr. Sean St.Clair, Oregon Institute of Technology Sean St.Clair is an Associate
different ways and levels of understanding a givenphenomenon (i.e., the tensions encountered) and a level of awareness (Åkerlind, 2008). Theemphasis is on understanding and describing not only the commonalities, but more so thevariation in the individuals’ ways of seeing and experiencing the phenomenon (Marton & Tsui,2004).The target population for this study was US engineering educators who implemented PBL in theearly years of an undergraduate engineering program – Year 1 and/or Year 2. The rationale forthis choice of context was that PBL has less of a presence in the early years of the engineeringprogram than in later years, when project-based capstone courses are widely adopted. Despiteadvocacy for learner-centered pedagogies like PBL in
concepts related tothermo-fluids and heat transfer areas.Course Development and ImprovementThermodynamics and Heat Transfer Laboratory is a three hour-credit junior to seniorundergraduate core curriculum course designed for all Engineering Technology (ET) students. Page 25.843.3Our ET program majors range from mechanical engineering technology, electrical engineeringtechnology, industrial engineering technology and biomedical engineering technology. Also, thiscourse is one of the main precursors of the capstone Senior Design course. The Senior Designencompasses a student-led team project that has as a main outcome demonstrating a workingprototype
resources, and determining how to solve thechallenges of setting up a secure and viable network. The capstone event for students whoparticipated in the IT club is a two-day cyber defense competition (CDC) on the Iowa StateUniversity campus. During the remote setup, the high school students were able to log into achat room and ask for guidance or clarification from college students supporting the equipmenton campus. These chat conversations were logged and this paper utilizes content analysis toquantitatively analyze the chat conversations in terms of the students progressing throughBloom’s taxonomy. The results demonstrated that students were in the Applying, Analyzing andEvaluating stages of learning, showing that the students did perform active
categories: (1) service consumers, (2) serviceproducers, and (2) service managers. Service consumers utilize the services offered by theCBDM. Service consumers include, for example, students participating in distributed design andmanufacturing projects, researchers/engineers investigating a new design prototypes, orcompanies with geographically distributed manufacturing shops that need to manufacture thecomponents of a new product. Service producers provide human resources in term of intellectualcapital and labor that result in provisioning of useful services. For example, a laboratory assistantor production manager could be a service producer who installs a new set of devices andequipment into the CBDM and integrates these components to form a new
., performing mechanical testing and evaluation of scanners and other mobile devices in Holtsville, N.Y. His largely experimental research is focused on parametric studies of novel lightweight composites and simulations of functionally graded materials under load.Dr. Vikram Kapila, Polytechnic Institute of New York University Vikram Kapila is a professor of mechanical engineering at NYU-Poly, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF funded Research Experi- ence for Teachers Site in Mechatronics, and an NSF-funded GK-12 Fellows project. He has held visiting positions with the Air Force Research Laboratories in Dayton, Ohio. His research interests are in cooper
. National Science Foundation-sponsored SUCCEED Coalition. He has also been active in promoting qualitative research methods in engineering education through workshops presented as part of an NSF project. He has received several awards for his work, including the Presidential Early Career Award for Scientists and Engineers, the Ralph Teetor Education Award from the Society of Automotive Engineers, being named a University of Florida Distinguished Teaching Scholar, and being named the University of Florida Teacher of the Year for 2003-04. He is a member of the American Society for Engi- neering Education and the American Educational Research Association and is currently Editor-in-Chief of Polymer Reviews.Dr. Mirka