are imminent in the student’s career but courseobjectives broaden well beyond professional development. The “Mini” modules are briefoverviews or subsections of the full module topics, and consist of four or five slides for easyintegration. This paper focuses on the development and summary of these “Mini” modules.Professional Development “Mini” Modules“Mini” modules have been developed around three major topics: Educational Context;Professional Development; and, Engineering Ethics. The Educational Context “Mini” modulesexplore the development of engineering education through its history, the relationship betweenthe missions of the university and individual engineering departments, and the overallphilosophy of higher education. These modules
AC 2012-3847: CCLI: MODEL ELICITING ACTIVITIESDr. Larry J. Shuman, University of Pittsburgh Larry J. Shuman is Senior Associate Dean for Academic Affairs and professor of industrial engineering at the Swanson School of Engineering, University of Pittsburgh. His research focuses on improving the engineering education experience with an emphasis on assessment of design and problem solving, and the study of the ethical behavior of engineers and engineering managers. A former Senior Editor of the Journal of Engineering Education, Shuman is the Founding Editor of Advances in Engineering Education. He has published widely in engineering education literature, and is co-author of Engineering Ethics: Balancing Cost
Page 25.1339.1 c American Society for Engineering Education, 2012 The Role of Exposure to Failure Case studies on Students’ Technical and Professional Growth: A Mixed Method ApproachAbstractA number of studies have assessed the value of including failure case studies in the civilengineering curriculum. While the value of exposure to failure case studies to students is welldocumented, their relative benefits on different aspects of the student (professional, technical,ethics, etc.) are not well documented. The purpose of the study is to assess the impact ofincluding case studies in civil engineering and engineering mechanics courses on
confirmed by later studies.4,8 Perry7 began to question why college studentsresponded to similar learning environments differently and found that an individual’s differentepistemic stage plays a crucial role in organizing his/her learning process and dealing withunclearly defined problems. Perry’s original nine stages of epistemic development have beenrefined as four major stages:11 dualism (black-and-white types of thinking and their variations),multiplicity (acknowledging uncertainty and accepting multiple opinions), contextual relativism(acknowledging the importance of contexts for meaning making), and commitment withinrelativism (adding ethical and moral responsibility and professional commitments to contextualrelativism).Challenges of Second
, including nonlinear structural analysis, computational mechanics, and biomechanics. He is also active in engineering education and engineering ethics, particularly in the subjects of mechanics education and appropriate technology. At UPRM Papadopoulos serves as the coordinator of the Engineering Mechanics Committee in the Depart- ment of General Engineering. He also co-coordinates the Social, Ethical, and Global Issues (SEGI) in Engineering Program and Forums on Philosophy, Engineering, and Technology.Dr. Aidsa I. Santiago-Romn, University of Puerto Rico, Mayaguez Aidsa I. Santiago-Romn is an Assistant Professor in the Department of Engineering Science and Materi- als and the Director of the Strategic Engineering
, biologicalsciences, and geosciences.As shown in Table 1, the first class was an introduction to nanotechnology with a focus onpractical applications. This was followed by 3 week blocks on nanoscience and nanotechnologyin chemical engineering, mechanical engineering, biology, and electrical engineering. To meetthe objective of demonstrating the interdisciplinary nature of nanotechnology, a team of facultyfrom the four disciplines taught the course where each instructor taught the section in theirdiscipline. After exploring many possibilities in nanotechnology, the final class focused on thepossible risks of nanotechnology including health risks, ethics and public perception ofnanotechnology
choices of bridge spans, materials, and/or forms with a given gravity loading condition. Connecting those failures to the real tragedies in the world, such as Minneapolis bridge collapse in 2007 [12] and Tacoma Narrow bridge collapse in 1940 [13], brings professional ethics into the game as well. This game project fits nicely to the core of the “Civil Engineering and Architecture” course in the PLTW curriculum. Game 5: BioEnergy- The consumption habits of modern consumer lifestyles are causing a huge worldwide waste problem due to overfilled local landfill capacities, which has a devastating impact on ecosystems and cultures throughout the world. In the field of biofuels engineering, there have been successful attempts to recycle waste by
evaluation, ethical andsocietal issues, project management, team and communication skills, improved attitudes, andother professional skills. Semi-annually, as well as at the beginning and end of LTS experiences,NESLOS will be administered to engineering students as a means of measuring learning out-come and skill gains. It is anticipated that NESLOS results will provide insight into LTS drivenlearning outcomes. (5) Measures of well-being: We include survey elements that follow Keye’s FlourishingScale to provide a categorical diagnosis of “flourishing” or “languishing” mental health of thestudents 23. The instrument will be adapted for evaluating engineering students. Subjective well-being items are used to comprehensively assess students in
AC 2012-3436: CHALLENGES AND SUCCESSES OF CREATING A LIVING-BUILDING LABORATORY (BUILDING AS A LABORATORY) FOR USEIN THE ENGINEERING TECHNOLOGY CURRICULUMMr. Jason K. Durfee, Eastern Washington University Jason Durfee received his B.S. and M.S. degrees in mechanical engineering from Brigham Young Univer- sity. He holds a professional engineer certification. Prior to teaching at Eastern Washington University, he was a military pilot, an engineering instructor at West Point, and an airline pilot. His interests include aerospace, aviation, professional ethics, and piano technology. Page 25.293.1