Paper ID #12915Learning from Toy Makers in the Field to Inform Teaching Engineering De-sign in the ClassroomMs. Chrissy Hobson Foster, Arizona State University Chrissy Foster is a Ph.D. candidate in Engineering Education at the Mary Lou Fulton Teachers College of Arizona State University. Her dissertation study explores the approaches to technical innovation within Native American communities.Matthew Dickens, Arizona State UniversityDr. Shawn S Jordan, Arizona State University, Polytechnic campus SHAWN JORDAN, Ph.D. is an Assistant Professor of engineering in the Ira A. Fulton Schools of En- gineering at Arizona State
Paper ID #13922Ta-Da! You’re a design thinker! Validating the DesignShop as a Modelfor Teaching Design Thinking to Non-Designers and Achieving Systemic Re-Design in the Education SystemMs. Jessica Asly Artiles, Massachusetts Institute of Technology Jessica A. Artiles: Mechanical Engineer, Masters of Science Candidate in the Technology and Policy Pro- gram, Masters of Science Candidate in the Mechanical Engineering Department, Massachusetts Institute of Technology, jartiles@mit.eduMiss Katherine E LeVine, Wellesley College Katherine LeVine has been working to improve education during her four years at Wellesley College
across the nation. Engineering curricula during this period was based on specializedtechnical training to allow graduates to become immediately useful in industrial design careersand to efficiently meet the needs of the quickly developing economy. This trend of educationcontinued and “by 1900, it was generally recognized that American laboratories and methods forthe teaching of engineering were not surpassed and often not equaled in any other part of theworld. This could not be claimed, however, for much of the theoretical instruction in design” 1.Despite the weakness of design theory instruction, the focus on applied learning and hands-onexperience in engineering schools sufficiently met the needs of the booming manufacturing,automobile
natural science. However, students are oftenfocused on fulfilling requirements and constraints necessary to achieve high grades, rather thanemphasizing creative ways of apply their knowledge. Past studies have shown that whileengineering instructors value creativity, they believe it to be lacking in their students, while atthe same time current engineering students do not think that creativity is valued by theirprofessors1. Similarly, while there is a greater industry emphasis on recruiting creative engineersand a greater interest in creativity from new engineering students, related literature questionswhether or not postsecondary institutions are teaching creative thinking to their engineeringstudents1. Postsecondary institutions must consider
Paper ID #13654Valuing and engaging stakeholders: The effects of engineering students’ in-teractions during capstone designIbrahim Mohedas, University of Michigan Ibrahim Mohedas is currently a Ph.D. candidate in the Department of Mechanical Engineering at the University of Michigan. He received his B.S. in mechanical engineering from the University of Texas at Austin in 2011. His research focuses on the design of medical devices for resource limited settings, particularly related to the use of design ethnography in developing these technologies. He works in the Laboratory for Innovation in Global Health Technology (LIGHT
Singapore University of Technology and Design (SUTD). Dr. Wood completed his M.S. and Ph.D. degrees in the Division of Engineering and Applied Science at the California Institute of Technology, where he was an AT&T Bell Laboratories Ph.D. Scholar. Dr. Wood joined the faculty at the University of Texas in September 1989 and established a computational and experimental laboratory for research in engineering design and manufacturing, in addition to a teaching laboratory for prototyping, reverse engineering measurements, and testing. During his academic career, Dr. Wood was a Distinguished Visiting Professor at the United States Air Force Academy. Through 2011, Dr. Wood was a Professor of Mechanical Engineering, Design
Page 26.951.2support research activity at an internationally competitive level for a top 100 university.Coordinating two courses for 300 or more students is normal, with support from teachingassistants for tutorials and laboratory classes. (In Australian universities, each course isnormally 25% of a full-time student’s study load for a semester.) In view of its importance,the capstone design course has a slightly higher level of teaching resources than most othercourses.The second challenge is students’ lack of practical knowledge. Practical knowledge amongstudents entering our engineering courses is usually limited to basic domestic repairs andassembling flat-packed furniture. Almost all the prior courses completed by students focuson
career in automotive research as a product development engineer at the University of Windsor/Chrysler Canada Automotive Research and Development Centre (ARDC), conducting vehi- cle durability studies and associated research activities in the Road Test Simulation (RTS) laboratory. In 2005, she joined the University of Windsor as an Experiential Learning Specialist, focusing on teaching and educational research in hands-on learning and cooperative education as it relates to undergraduate engineering. She has developed neural network models for automotive rubber bushings for incorporation in durability simulations with the goal of accelerating product development. Additional work related to the field of composites
Paper ID #11864 Laboratory for Innovation in Global Health Technology (LIGHT). SARL focuses on the design, develop- ment, and evaluation of medical devices, especially for balance-impaired populations such as individuals with vestibular loss or advanced age. LIGHT focuses on the co-creative design of frugal innovations to address healthcare challenges in resource-limited settings. Prof. Sienko has led efforts at the University of Michigan to incorporate the constraints of global health technologies within engineering design at the undergraduate and graduate levels. She is the recipient of a CAREER Award from the National Sci- ence Foundation, a Teaching Innovation Prize from the UM Provost, and a UM Undergraduate
process and design educational and research programs that bring the concepts of innovation and entrepreneurship into the classroom and the research laboratory. Dr. Christodoulatos is leading the implementation of academic entrepreneurship through the creation of innovative curric- ula and overseeing the commercialization of the Institute’s intellectual property. He has been teaching and performing research since 1988 and has managed over a hundred and fifty major research projects exceeding $30M. Dr. Christodoulatos has developed and delivered entrepreneurship curricula and special- ized innovation and entrepreneurship workshops for faculty, administration and technical entrepreneurs in Malaysia, Brunei and Taiwan. He
were enrolled in the course this semester. The purpose of this class is to teach firstyear engineering students important technical skills and practices necessary for engineering design. The students have the opportunity to tackle a difficult design challenge that requires them to use these capabilities, including working with a team, preparing and giving presentations, working under a budget, and constructing a functional prototype that accomplishes a complex set of 18objectives and adheres to a set of design specifications . In order to complete the project, students learn the basics of mechanics, electronics, programming, and manufacturing. Learning
experiences.Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication
trends such as BIM and green building call for strongcommunication and teamwork skills, capacity to work efficiently within co-located teams andabilities to apply fundamental engineering, management and computer skills in real worldscenarios [13], yet traditional lecture-based pedagogical models are no longer efficient to deliverythese goals. An intrinsic drawback of these models resides in the fact that students are treated aspassive recipients with linear and fragmented teaching presentations, and deprived of theopportunities for learning the holistic nature and broad vision of the architecture, engineering andconstruction (AEC) disciplines [14].In contrast, project-based learning as a proven effective student-centered pedagogical approach[15
Paper ID #13724Academic Maker Spaces and Engineering DesignDr. Vincent Wilczynski, Yale University Vincent Wilczynski is the Deputy Dean of the Yale School of Engineering and Applied Science and the James S. Tyler Director of the Yale Center for Engineering Innovation & Design. As the Deputy Dean, he helps plan and implement all academic initiatives at the School. In addition, he manages the School’s teaching and research resources and facilities. As the James S. Tyler Director of the Center for Engineer- ing Innovation & Design he leads the School’s efforts to promote collaboration, creativity, design and
projects that include the layout optimization for wind farms, array design for novel wave energy conversion devices, optimization of collaborative power systems, the sustainable redesign of commuting bicycles, and the quantification of sustainability during the early de- sign phase. Dr. DuPont completed her PhD in Mechanical Engineering from Carnegie Mellon University in 2013 in the Integrated Design Innovation Group, and her projects are currently funded by the National Science Foundation, the National Energy Technology Laboratory, Oregon State University, and Oregon BEST/Bonneville Power Association.Dr. Christopher Hoyle, Oregon State University Dr. Christopher Hoyle is currently Assistant Professor and Arthur Hitsman
Paper ID #11107Capstone and Faculty Mentors/Advisors/CoachesDr. Gene Dixon, East Carolina University Gene Dixon is a tenured Associate Professor at East Carolina where he teaches aspiring engineers at the undergraduate level. Previously he has held positions with Union Carbide, Chicago Bridge & Iron, E.I. DuPont & deNemours, Westinghouse Electric, CBS, Viacom and Washington Group. His work expe- rience includes project engineer, program assessor, senior shift manager, TQM coach, and production reactor outage planner, remediation engineer. He gives presentations as a corporate trainer, a teacher, and a