in place. Although several students worked diligently throughout the project, many didnot possess the self-regulation necessary to take responsibility for efficiently completing taskswithout extensive oversight. Then, as checkpoints loomed, there was often sense of urgency. Anadministrator raised this issue while speaking about the senior capstone course of the academy, Page 26.1266.10commenting, “Students sometimes are the best procrastinators and they’re kind of going, ‘Oh, atthe end I’ve got to rush through and I’ve got to get all these things done.’”Some of those who reached checkpoints early, and thus had several days before the
, and develop a physical intuition about engineering concepts.Earthquake Engineering Modules (Abbreviated) Two earthquake engineering modules are briefly described here. A third module, acomprehensive capstone design project, is described in detail in the next section. Soil Liquefaction and Foundations: Introduces students to geotechnical considerations in seismic regions and methods to mitigate for poor soil conditions. This demonstration illustrates the potential effects of liquefaction on structures (see Figure 2). Structures with various foundations are tested to show differences in performance. Shear Wall Design: Students observe poor performance of a basic timber frame structure subject to a seismic event
campers, and $120/day forday campers with need-based scholarships available, and the proposed camp experience structuremay be adapted to fit other financial settings. We incorporate engaging field trips, immersiveactivities, hands-on lessons, emphasized involvement in research and technology, and groundedeach activity in current research at Duke University. Throughout the camp sessions, there ismentoring from current undergraduate and graduate students and exposure to a college lifestyle.The experience culminates in a team capstone project that demonstrates the students’ ability todefine a novel problem and pose a novel solution based on what they have learned through thecamp experience. This summer camp model suggests moving away from the
found in a traditional high schoolprogram, specialized courses that include an introduction to research method and twoTechnology and Engineering courses, and a University- or industry-based research mentorshipthat starts in the summer of the 10th grade and culminates in a senior capstone project. TheIntroduction to Research method class is designed to provide students with a vital, year long,full-emersion experience into the processes and activities involved with scientific andengineering research and practices. The Technology and Engineering courses, in 10th and 11thgrades, introduce students to the technology tools and their applications in science andengineering practices through modern, hands-on experiments. These courses integrate a
and university engineering curricula in the US have been following similartrajectories for some time. In the early 1900’s, engineering was treated more as a ‘trade’ at theuniversity level, and high schools encouraged vocational studies, including auto repair, woodshop, metalworking, cosmetology and other ‘trades’ to the non-college bound. Between 1935and 1965, most university engineering curriculum moved away from a trade-school curriculumto a more theoretical, mathematically-intensive one, delaying any hands-on design projects untilthe senior or ‘capstone’ design course 11.Similarly, the nation’s high schools tried to erase the division between the trades and the college-preparatory tracks to prepare anyone who might be inclined to attend a
project, severalstudents were very interested in the opportunity to be involved in a community outreachproject aimed towards researching and developing effective and appropriatedemonstrations of sound wave phenomena to 5th graders. The entire class was given oneresearch and writing assignment to search for helpful resources related to this Page 26.1713.6effort. When final projects were selected by the twelve enrolled in the course, two seniorfemale electrical engineering students chose to devote their entire capstone project ondeveloping outreach materials and demonstrations, and they became involved in ongoingmeetings held by the WAVES project
courseof study) (at least 8 units at the 300- or 400-level); 24 units of additional coursework in a liberalarts specialization; and at least 4 upper-level LSE courses: two on project-based learning, asenior project course, and a capstone. Students must also either study or intern abroad, orcomplete 2 additional upper-level courses in global studies.As of Fall 2014, 55 students have graduated with a B.A. in LSE at CPSU, and 55 additionalstudents are currently active in the program (48 as LAES majors and 7 currently on a one- ortwo-quarter individualized change of major agreement). (Two other students were denied theirdegree in Spring 2012, 3 students discontinued the program, and 1 student has completed all of
University of Cincinnati Evaluation Sevices Center and the Arlitt Child & Family Research & Education Center. She has a BS in Chemical Engineering and an EdD in Educational Studies with a concentration in the cognitive and social aspects of instructional practices. Dr. Maltbie has evaluated STEM educational projects and programs since 2000.Ms. Julie Steimle, University of Cincinnati Julie Steimle is the Project Director for the Cincinnati Engineering Enhanced Math and Science Pro- gram (CEEMS). Prior to that, she ran an outreach tutoring program for K-12 students at the University of Cincinnati. Before joining UC, Ms. Steimle served as the Director of Development and Children’s Services at the Literacy Network of
(e.g., control of dynamicsystems, mass transfer). In this logic, students spend the majority of their time learning a longsequence of engineering “fundamentals” before they are deemed competent to engage in creativedesign problem solving in their final-year capstone projects.3 This approach is understood as“exclusionary” not in the sense of being elitist but in the more general sense of seeking to keepout that which does not belong, including those persons (or those facets of persons) not in linewith the dominant decontextualized, narrowly technical-analytic way of problem solving withinengineering. Lectures and focused problem sets remain the mainstay educational modalitieswithin university engineering education, even as wide-ranging
standards involved in designing engineering curricula. He is currently conducting research on an NSF project led by Dr. Stephen Krause, focused on the factors that promote persistence and success for undergraduate engineering students.Dr. Eugene Judson, Arizona State University Eugene Judson is an Associate Professor of for the Mary Lou Fulton Teachers College at Arizona State University. His past experiences include having been a middle school science teacher, Director of Aca- demic and Instructional Support for the Arizona Department of Education, a research scientist for the Cen- ter for Research on Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His