Paper ID #19182Enhance the Student Learning Outcome in Green Energy Engineering usingCombined Lecture and SeminarProf. Tzu-Liang Bill Tseng, University of Texas, El Paso Dr. Tseng is a Professor and Chair of Industrial, Manufacturing and Systems Engineering at UTEP. His research focuses on the computational intelligence, data mining, bio- informatics and advanced manu- facturing. Dr. Tseng published in many refereed journals such as IEEE Transactions, IIE Transaction, Journal of Manufacturing Systems and others. He has been serving as a principle investigator of many research projects, funded by NSF, NASA, DoEd, KSEF and
Paper ID #20473Green Infrastructure Training for VeteransMs. Carol L. Considine, Old Dominion University Carol Considine is the Assistant Dean of Outreach for the Batten College of Engineering and Technology at Old Dominion University (ODU) and an Associate Professor of Engineering Technology. She has a Bachelor of Science in Civil Engineering from Virginia Tech and a Master of Science in Civil Engineering from University of California, Berkeley. She has fifteen years of industrial experience as an estimator and project manager and is a LEED AP BD+C. She is a member of the NIST Community Resilience Panel, Building
conduct research projects within a thematic engineering or scienceresearch area. The faculty administrators for these sites are often responsible for recruitingparticipants, providing a high-quality research experience, and facilitating workshops to helpparticipants develop professional and research skills. When administering a REU program site, itmay also be suggested, or even required, that a plan be developed to evaluate the effectiveness ofthe site’s programming. Past and present REU administrators have used variety of routes fordeveloping their evaluation plans, including: using published engineering education articles todevelop an evaluation plan or integrating a social-science researcher who can advise onevaluation. The role of the social
, among others. Several examples are deviceimplants, optical devices, micro and nanomachining, embedded systems and integratednano sensor systems. The recent Electrical and Computer Engineering (ECE) andMechanical Engineering (ME) curricula lacked inclusion of these elements within theirprograms. Close scrutiny to the need of local industry from engineering graduates hasemphasized the motivation to develop these materials into the engineering curricula.Within the ECE curriculum, a new senior course was developed to cover MEMS/NEMSdevices as well as wearable and IoT devices with Bluetooth and wireless features. TheMEMS/NEMS module of the new course integrates software CAD tools and hardwareimplementations. It is a project-based course where
training in Molecular Biophysics at the University of Vermont under David Warshaw. His research interests include novel assessments of educational efficacy, the molecular basis of cell movement, and the mitigation of infectious diseases. c American Society for Engineering Education, 2017A skills-focused approach to teaching design fundamentals to large numbers of studentsand its effect on engineering design self-efficacyDesign courses are often tasked with teaching all the steps of the engineering design process inthe span of a single semester. Project-based curricula are particularly useful in this regard,providing end-to-end exposure all the steps of the engineering design process, includingfabrication
Paper ID #19299Evolution of an Introductory Electrical Engineering and Programming CourseProf. Branimir Pejcinovic, Portland State University Branimir Pejcinovic received his Ph.D. degree from University of Massachusetts, Amherst. He is a Pro- fessor and former Associate Chair for Undergraduate Education at Portland State University, Electrical and Computer Engineering department. In this role he has led department-wide changes in curriculum with emphasis on project- and lab-based instruction and learning. His research interests are in the areas of engineering education, semiconductor device characterization, design and
investigates the adaption of the Competing Values Framework (CVF) for use instudying behavioral complexity and leadership in engineering students working in project teams.Based on a foundation of other studies that leverage the CVF in an engineering educationcontext, the CVF survey was slightly modified to be appropriate. Data were collected fromstudents working on projects both in curricular and co-curricular settings. The data demonstrateslevels of complexity among example student profiles and draws comparisons between curricularand co-curricular settings as well as between genders. Results show that while there are genderdifferences in the curricular setting, there are no significant differences in leadership rolesbetween genders in the co
awareness of each other’s thinking and shareddecision making associated with their design process and final reporting. What an effective teamneeds are executive skills for managing a design process that transitions their ideas into a plan,research, build, test and refine cycle. Project management tools can support the processes ifteam leaders know how to track and facilitate the process. One of the goals of this first yearengineering course is to develop these skills in the team members so they can effectively usethem for future design activities like senior design and multidisciplinary projects in industry. In this paper, we present results from a qualitative analysis of student responses to open-ended questions designed to elicit their
Paper ID #19183MAKER: Vehicle Unlocking SystemDr. Hugh Jack P.E., Western Carolina University Dr. Jack is not the author. The abstract has been submitted on behalf of Mrinal D.Kawale, Neha D.Sharma - MACS College, Pune, India. c American Society for Engineering Education, 2017 Vehicle Unlocking SystemAuthorsMrinal D.Kawale, Neha D.SharmaMACS College, Pune, IndiaAbstract In vehicle unlocking system project, we have implemented a new level of security forvehicles based on biometric identification using fingerprint scanner. Whenever a person givesa fingerprint, the
the different ways in orderto protect them. Security is primary concern everywhere and for everyone. This project describesthe designing of an electronic gadget for the security of Tirumala pilgrims using Arduinomicrocontroller. This is a simple and useful security system. Gadget is tied up with a set ofsmart sensors like PIR sensor and Pulse rate sensor. A PIR sensor is interfaced to the controllerto detect the presence of an animal in the forest area and immediately the gadget will send amessage to the security team by using GSM technology and also a buzzer alert is given tosecurity team and other people about the presence of an animal. A Pulse rate sensor is alsopresent in the gadget to find the increase in pulse rate and inform the family
Paper ID #19190MAKER: Team UAV QuadcoptersDr. Hugh Jack P.E., Western Carolina University Dr. Jack is not the author. This abstract has been submitted on behalf of Rishav Roy Chowdhury, Sachin Vidyasagaran, Ritin Raveendran, Pulkit Khemka - VIT University, Vellore, India. c American Society for Engineering Education, 2017 Team UAV QuadcoptersAuthorsRishav Roy Chowdhury, Sachin Vidyasagaran, Ritin Raveendran, Pulkit KhemkaVIT University, Vellore, IndiaAbstractThe main aim of the project is to build a quadcopter which can autonomously performfunctions such as surveying, aerial
regulators. College professors that incorporate industry experience into theirdidactic activities through group projects, and peer and external feedback of oral presentationsmay build students’ professional, ‘soft skills’, such as communication and teamwork, that candifferentiate them to potential employers and provide them with the skills necessary for careeradvancement.Bringing industry and research experience into the classroom by utilizing real world projects andguest speakers when discussing examples and applications of theory are recommended teachingpractices for engineering professors (Loendorf 2004; Loendorf 2006; Lewis 2008; Banik 2016).The Accreditation Board of Engineering and Technology (ABET) recommends “real-world”engineering design
Paper ID #18965Designing a Strain Measurement System based on Circle Grid Analysis forSheet Metal Forming ApplicationsMr. Relmane Baptiste, University of Maryland, Eastern Shore Relmane Baptiste, is a 2014 graduate from the University of Maryland Eastern Shore (UMES) with a Bachelor of Science Degree in Engineering, specializing in Electrical Engineering. Mr. Baptiste designed a Strain Measurement System for his Senior Design Project. This design was based on Circle Grid Anal- ysis for Sheet Metal Forming Applications, where he extensively utilized Multisim and Solidworks to complete his Senior Design Project. During his
, researchers have analyzed project deliverables andconceptual design outcomes as meaningful representations represent students’ innovationcompetency.7–9Yet, innovation is a complex phenomenon. Current understanding of innovation involves notonly outcomes and individual characteristics, but the environments that support innovativeoutcomes10–12, and more prominently, the processes that innovators13,14 and innovative teamsorganizations15 utilize. In this study, we investigate the breadth of student understanding ofinnovation processes. More specifically, we ask: 1. To what extent do engineering students acknowledge unique phases of innovation as part of their personal innovation processes? 2. To what extent do engineering students acknowledge
the classroom or in extraclassroom activities (e.g. Felder and Brent 2003, Flowers 2007, Wells and Edwards 2013; note the existence of a journal, A ctive Learning in Higher Education , devoted to this). For this reason, internships have become widespread in engineering education (e.g. McCormick 2017). The benefits of an internship derive not only from the application of STEM concepts learned in the classroom to realworld problems, but also from the experience of managing relationships with project team members and external stakeholders. Moreover, the authenticity of an engineering
; Science Authors and Contact: Project Website: Kerrie A. Douglas Tamara J. Moore http://engrteams.org Purdue University Purdue University douglask@purdue.edu tamara@purdue.edu Project Description The EngrTEAMS project has been developing a suite of 13 integrated STEM curricula for grades 4 – 8. The curricula are hands-on engineering design challenges that integrate mathematics and science grade-appropriate content, mapping to Next Generation Science Standards for engineering and discipline-specific standards. Each unit was inspired by a
and implementing professional development programs, curricula, and assessment of student learning for K-12 teachers in STEM. At the college level, he had collaborated on projects exploring teaching methodologies and assessment strategies in undergraduate courses in the sciences, engineering, and computer science. Dr. Kimmel has received numerous awards in recognition of his service, including: ASEE 1985 Vincent Bendix Minorities in Engi- neering Award, and ASEE CENTENNIAL MEDALION for ”Significant Lasting Impact on Engineering Education,” 1993. The NJIT Foundation Overseers Public and Institute Service Award, 1981 (First Re- cipient) and in 2005; and the Allan R. Cullimore Distinguished Service Award (NJIT) for
through assignments,class discussions and a final project that incorporated one or more suitable broader impact effortsin the context of their technical research area. The first offering of the course was taken by 13students and student feedback indicated that 90% of the students gained a better understanding ofbroader impacts, could better articulate the impacts of their research and understood theimportance of intentional efforts to achieve specific societal outcomes.IntroductionEngineers must communicate the potential impact of their work beyond just the technicalaspects. The ability to develop and articulate how one’s research benefits society and contributesto the achievement of societal outcomes are key skills for scientists and engineers
local high school student who was interested in learning more about both electronicsand military applications.The ultimate goal of the Jammer Project is to create a functional set of equipment that includesboth a mock RCIED and jammer. They are planned to be used for demo purposes at high schoolrecruiting activities.This paper covers the first two phases of the Jammer Project: creating a mock RCIED and thecircuit to control the jammer. It begins with a short description of the course in which the lab istaught, how the link to high school students came about, plus some background information onmilitary applications and what the military terms “electronic warfare”. Then it describes thedesign and construction of both devices, followed by the
perceived group roles in the context of first-year engineering courses, weexplored female students’ learning experience in a group project setting in this work-in-progress using Benne and Sheats’ functional roles model. Based on our qualitativedata, we found that female students performed a range of roles in the group project. Inthe dimension of task roles, female students usually took the roles of assistants, opiniongiver, coordinators and initiator-managers. In the dimension of social roles, femalesserved as harmonizers, followers or gatekeepers. As to the dimension of individual roles,some female students self-reported the feeling of being an outsider in working with aproject group. Suggestions were proposed to promote engineering curriculum
Professor at LeTourneau University. He received his B.S. in Mechanical Engineering Technology from LeTourneau in 1994 then proceeded to spend 16 years in industry focusing on machine and civil design as well as project management. In 2010 he began his teaching career at his alma mater to share his experiences with engineering and technology students. He earned a masters in Engineering Project Management from Eastern Michigan University in 2014. He is currently a co-PI on the schools NSF-STEP retention grant. c American Society for Engineering Education, 2017 Six Years of Freshman Retention Efforts: Where are We Now?AbstractThe First-Year Initiatives for Retention Enhancement (FIRE) project
projects in industry and academia for more than 15 years.Dr. Nicholas B. Conklin, Gannon University Nicholas B. Conklin received a B.S. in applied physics from Grove City College in 2001, and a Ph.D. in physics from Penn State University in 2009. He is currently an associate professor and chair of the Physics Department at Gannon University, Erie, PA. c American Society for Engineering Education, 2017 Solar Eclipse Ballooning with a Multiband Tracking Subsystem for Undergraduate Research ExperienceAbstractThis paper discusses an on-going research project that offers an undergraduate research platform inelectrical and computer engineering (ECE), especially for high-altitude
spent six years with Boston Scientific Corporation. During this time, he progressed from a doctoral entry-level position to manage the day-to-day activities of five direct reports along with the operation of a corporate cell biology research laboratory staffed with ten scientists. He also worked with senior management to propose and develop a cross-Divisional collaboration network to improve communication and eliminate redundancies within the Company’s billion-dollar research and develop- ment (R&D) organization and drive the completion of cross-disciplinary medical device R&D projects critical to products’ commercialization. Prior to Boston Scientific, Garanich served as both Associate and Analyst with The
Allegheny). Student participation in the group was entirelyvoluntary. Our student pool is primarily first year, first generation college students. As it is asmall campus, the total number of students involved in the project is not large (~20), andstudents are primarily freshman and sophomore level.Each meeting, participants were given a discussion prompt which related to a current topic inengineering. Some were specific to the female experience in engineering, such as how toapproach a superior with a problem, while others were more broad, such as how to give aneffective presentation. Topics were determined from a wide variety of sources, such as theSociety of Women Engineers, American Association of University Women, and Association forWomen in
each of these issues, literature wasreviewed to develop a curriculum-wide solution.Course integration has been shown to promote student engagement2. Project based scenarios areoften used to connect course concepts that are individually important for the students tounderstand. Previous works demonstrating this include studies of vertical integration frameworkfor capstone design projects by Hardin and Sullivan4, an investigation of the importance ofintegration of engineering curricula by Froyd and Ohland2, and the use of a spiral learningcurriculum in the first two years of mechanical engineering by Roemer and Bamberg5. Researchof hands on learning has been shown to increase student retention6. Diverse courses such asmechanical design and
seniorcapstone projects [1-4], working with external clinical mentors [5], learning and applyingregulatory and intellectual property guidelines [6], conducting rapid design challenges [7,8], andmany more [9]. Furthermore, the design experience may be patient-oriented with studentsinteracting directly with patients [10].One very common aspect of biomedical engineering senior design experiences is the requirementthat students summarize the physiology and anatomy relevant to the specific clinical problem ofinterest. While this background research effort gives the students a baseline knowledge topropose potential design solutions, the students rarely understand the entire disease pathwayleading from the patient in a healthy state to the current diseased
spending currently absorbs over17% of GDP, nearly twice the average of the 34 OECD member nations and nearly 1.5 times thenext highest country. While prior research has generated meaningful improvements in healthcare delivery, the vast majority of this activity focuses on improvements in large urban centers,which has placed “rural communities . . . at the margins of the health care quality movement[with] most quality initiatives . . . not directly applicable to rural health care settings.” This workexplores the design of the internship program, the challenges of interprofessional education andapproaching improvement projects in rural healthcare settings, and the benefits the partnerorganizations and students received from the
solutionto allowing students to perform a variety of simulations and validating new algorithms beforeimplementing them on an actual mobile robot, teaching ROS so that students can use itefficiently and effectively is a challenging task. Regular electrical engineering courses on ROSmay focus on theories but neglect hands-on experiences. Traditional lab-driven pedagogy mayprovide hands-on opportunities on ROS itself but may still not bring students close enough to theactual applications of ROS to their major robot projects in their electrical engineering education.In this paper, a technological content knowledge (TCK) based method is utilized to createlearning opportunities that allow students to construct their knowledge of the technology/tool(the T
assess and address more successful curricular applications andteaching methods in the Civil and Environmental Engineering Departments.Currently, the senior-level course in Sustainability is required for Environmental Engineers andserves as an environmental elective for the majority of Civil Engineers. Environmental and Civilengineers at Florida Gulf Coast University share the same course template for the first two years.Performance in the senior level Sustainability in Engineering course varies even though thetopics reflect all varieties of infrastructure including energy efficiency, construction,transportation and water and waste infrastructure as well as project planning, life cycle analysesand economic topics. Students in both disciplines
, he developed the capstone course sequence in the newly-formed Bio- engineering department and has been responsible for teaching it since. Todd also serves as a Director for the UTDesign program, which facilitates resource sharing and corporate sponsorship of projects for all engineering disciplines at the university. He attended the Capstone Design Conference in 2014 and 2016, and is an active member of IEEE and EMBS.Prof. Margaret Garnett Smallwood, University of Texas, Dallas I am a Senior Lecturer II in the Jindal School of Management at the University of Texas at Dallas. I teach three business communication courses to undergraduate students. I have an MBA in international management and marketing from UTD and