the University of Washington include introductory and honors courses in bioengi- neering, tissue and protein engineering lab courses, bioengineering ethics, leadership, and bioengineering capstone writing and design courses. She is committed to enhancing diversity and inclusivity in engineer- ing, and creating opportunities for undergraduate students to engage in K-12 educational outreach. Dr. Hendricks has over a decade of experience leading educational outreach and summer camp programs at both Duke University and the University of Washington. c American Society for Engineering Education, 2017 Work-in-Progress: Reflection Enhances Student Engagement and Team Service Project
education is often described by faculty and graduate students as “a journey”, “alearning process”, and “a transformative experience”. These descriptions speak to theexperiential nature of doctoral education which aims at bringing about some change in studentsto prepare them for their future career. In the research literature, the path and process ofbecoming an engineering education researcher is an emerging field. In this paper, we present theframing of a co-operative inquiry project to explore our personal growth as graduate students.Co-operative inquiry is a research method in which multiple people share and explore a topicfrom their own perspectives through collective dialogue, reflection, interrogation, andtransformation. Our co-operative
2016, Erie, PA. OBJECTIVESThe purpose of this poster presentation is to provide a R E F L E C T I V I T Y & U N D E R S TA N D I N Gbrief overview of my dissertation work to date on an NSF- Student reflectivity & their
the task9 .The willingness to engage in a task can be further classified into what Eccles has defined as subjectivetask values (STV). There are four categories of STV in Eccles’ theory: 1) attainment, 2) intrinsic, 3)utility, and 4) relative cost. Attainment value is defined as the reflection of one’s perception of a task onone’s self-concept. Intrinsic or interest value is related to the enjoyment one experiences when engagingin a task. Utility value is defined as a perception one has of the potential outcomes of future engagementin a particular task. Finally, the relative cost is the cost of engaging in a task in terms of time, effort orpsychological factors associated with it9,12 .Participants and data collectionThe participants in this
Speaker) Concept Sketches Engineering Project Management: Analysis 5 of Alternatives Engineering Project Management: Failure Report – Preliminary concept 6 Mode and Effect Analysis (FMEA) selection Engineering Ethics (case studies and guest Report – Final concept design and 7 speaker) project schedule 8 Mid-term Project Presentation Presentation – proof-of-concept 9 Professional Behavior (Guest Speaker) Reflection on ethical behavior 10 Professional
appendix. The teachers were able to engage in the unit asstudents and were given time for reflection and discussion after each lesson within the unit. Teachers were first introduced to a multi-meter and were asked to measure the voltage ofseveral batteries. The unit had an inquiry-based focus; instead of telling the teachers how to use amulti-meter they were allowed to explore and discover how to measure voltage on their own. Asthe unit progressed, the teachers were introduced to each separate component of a circuit in asimilar way. After the battery was the resistor, then the LED, then the switch and finally thebreadboard. As each component was introduced the teachers were given a loosely structuredactivity that allowed them to explore the
rulesOne element that we believe helps us at different times in the year (especially when things getbusy) is a set of ground rules that we created as a group. From the onset of starting our virtualcommunity of practice, we thought it was important to establish a structure to ensure that eachmember of our community was accountable and prioritized their participation in the weeklymeetings. To create this structure, we co-constructed a set of rules of conduct and operatingprocedures. These rules include: information on reflections that we would complete as part of our participation the platform we would use for meetings how we would develop an agenda for the meeting when/how it would be determined if a meeting needed
life. The goals of product archaeology provide a strong foundation on which to developa classroom and project in which students can think critically both within and about engineering.MethodsWe used qualitative methods to explore how first year students’ perceptions of engineeringchanged during the course of a summer bridge program. When we desire to intimatelyunderstand a complex issue, such as changes in students’ perceptions of engineering, qualitativeapproaches serve as a particularly useful research strategy (Creswell, 2009). In order to betterunderstand the ways in which critical pedagogies can influence students’ perceptions of what itmeans to be an engineer, participants reflected on what it meant to be an engineer and how
feel solely through written communication so their team could correctlyidentify the liquid without ever seeing it.Reflection-based homework assignments were developed to obtain students’ perception of thesegame-based communication activities as prior research showed that use of these game-basedcommunication activities resulted in positive improvement in both students’ oral and writtencommunication skills. The coding scheme for the reflections was developed using a grounded,emergent qualitative analysis. The reflections were then content analyzed by two analysts. Aninter-rater reliability measure based on Cohen’s Kappa was calculated for each game-basedactivity. The inter-rater reliability for the “Professional Slide,” “ROYGBIV,” and
-related skills,and enables them to become more self-aware/mature independent thinkers. While many studentsengage in experiential learning activities voluntarily, some schools have formalized a creditedversion as an elective to ensure the learning includes the reflective and conceptual components,as verified by a deliverable outcome. A few schools such as Messiah College have also gone astep further to require an approved experiential learning activity of all students, includingengineering majors, to enhance their career preparation and community engagement beforegraduation. Students matriculating to Messiah College as of 2015 may now opt to fulfill theExperiential Learning Initiative (ELI) by either credited internship, practicum, service
teachingnetwork will make initial small changes in their teaching, which will lead to increasingly largerchanges over time. For the second method, the principal investigators (PIs) applied self-study,2 aqualitative research method, to examine and reflect on their design-based decisions,implementation, and outcomes. Results indicated that the structures and practices supportedmediating processes. Mediating processes became proximal outcomes. Medial and distaloutcomes for faculty change may likely be a multi-year trajectory. Conjecture mapping and self-study proved to be useful methods in evaluating a process grant focusing on faculty change.KeywordsFaculty Development, Design-based Research, Conjecture Mapping, Self-Study Methods,Engineering
teachers, because it helpsteachers think through all the necessary pieces of teaching an exemplary lesson. Knowing howpreservice teachers write lesson plans will inform the support that teacher preparation programsprovide. For this study, data was collected from a group of junior level STEM educationpreservice teachers to understand their lesson plan writing process. Specifically, we wanted toknow where preservice teachers struggled in the process. To accomplish this goal, we collectedthe preservice teachers’ lesson plans, reflections, log of their steps, and screen capture video.Because the data collection was coupled with the preservice teachers’ class and we did not wantto interfere with the course, we were not able to collect a full set of
Paper ID #19581A Sea of Variations: Lessons Learned from Student Feedback about the Roleof Trust in First-year Design TeamsMs. Natalie C.T. Van Tyne, Virginia Tech Natalie Van Tyne is an Associate Professor of Practice at Virginia Polytechnic Institute and State Univer- sity, where she teaches first year engineering design as a foundation courses for Virginia Tech’s under- graduate engineering degree programs. She holds bachelors and masters degrees from Rutgers University, Lehigh University and Colorado School of Mines, and studies best practices in pedagogy, reflective learn- ing and critical thinking as aids to enhanced
describe the first offering of Introduction to Tissue CultureLaboratory Techniques. In this lab makeover, we significantly changed expectations, lab format,lecture content, lab protocols, and grading policies in order to engage novice students. Theinstructor observed striking improvements in overall student engagement, mastery of techniques,preparedness, and confidence in lab performance. These observations are supported by studentfeedback in written reflections, informal communication, and end-of-course student surveys.Briefly, the course learning objectives include: 1) Demonstrate ability to work safely with animal cells and mastery of aseptic technique 2) Perform laboratory techniques essential for establishing and maintaining cell lines
and thinking through writing. Exploratory writing exercise involved atopical discussion of stormwater treatment process. A formal writing exercise was given in theform of a stormwater pollution prevention plan (SWPPP) assignment which included a peer–review session prior to final grading. A reflective writing exercise was included to summarizelearning experiences through classroom and writing activities throughout the semester to identifyareas of strengths and weaknesses and accomplishments and pitfalls and areas/topics for futuredevelopment.Student learning experiences and the effectiveness of writing exercises were discussed. Thebenefits of writing exercises were evaluated through the ABET outcomes and a survey andevaluation of students
at Clemson University, sought to support an open and iterativecollective effort: To bring the voices of those concerned with such study into a systematic andproductive encounter.Part of this project centered on the selection of participants eager to reflect on the directions theirresearch had taken and might take in the future, and to assure that a wide range of student andfaculty subject-populations would be represented in our conversation. A focus on intersectionalanalyses, stressing the shifting and contingent nature of identity, meant that participants wouldbe asked to consider the most fundamental features of their work and the conditions of“diversity” study and publication. We selected participants who seemed excited about
encouraged to explore a range of possibleinternships. With the approval of the program director, each student makes a commitment for asummer role which will contribute to advancing technical innovation in a real organization.Because each internship is also anticipated to have educational value, the program provides asupporting structure to help each internship experience become a student’s “ultimate elective”.Since the launch of the program, formal and informal assessments of each student’s learningfrom their own internship have been integrated into the program curriculum as part of theprogram design. Initially, learning assessment was primarily from written journal entries and afinal paper of accomplishments and reflections. In recent years
(Dym et al. 2005). At the start of the semester, students self-assemble into teams of 4-5,and each team chooses a lower-income country to explore. Over 14 weeks, teams use their chosencountry as a starting point to work through a cycle of biomedical device design, including broadscoping and needs assessment, problem definition, concept generation and iteration, CADprototyping, and design iteration based on peer, student instructor, and faculty feedback (see Table1). They also examine case studies of (successful and unsuccessful) biomedical device design,learn about healthcare innovation systems, and reflect on key challenges and best practices forbiomedical engineering design.Over 3 consecutive semesters, our students have developed a variety
AssignmentsIntroduction Week 1 Lecture (via VoiceThread) introducing Create electronic portfolio, course topics and the nature of familiarize yourself with engineering disaster course management software and on-line formatNature of Week 2 Lecture 2 on multidisciplinary nature Reflection (in eportfolio) onengineering of engineering design first two lectures;and design Readings on design process Assignment on design Readings from “Lessons Amid the process (and Design for
the various preferences and styles bywhich students learn. As such, the purpose of this paper is to present evidence on the effect offormative assessment design on student performance, and whether this effect varies by studentlearning style. The results from this study can be used by engineering educators to eitherdiversify or personalize their assessment style.This work is grounded in the Felder-Soloman learning style model, a model that was developedwithin engineering education and has been validated and widely used within the field. Thismodel categorizes learning styles along four distinct dimensions: perception (sensing versusintuitive), input (visual versus verbal), processing (active versus reflective), and understanding(sequential
undergraduate institutions(PUIs) in the second-year engineering curriculum. All students were given a lecture on bio-inspired design and asked to complete the C-K mapping template in class as part of learningactivities to understand the process of discovery, and again in their assignment to scaffoldapplication to the course project. Analysis of the student-generated templates using a rubricshows that students were able to successfully use information (knowledge transfer) to makeconnections between biology and engineering for creating solutions for design problems.Additionally, all students were asked to respond to six reflection questions regarding the content(biology) and process (bio-inspired design). Qualitative content analysis of second
[4].This study follows this line of research and intends to fine-tune the project-based methodology(PBM) in a lab course design under the theoretical framework of self-regulation. We believe thePBM enhanced with some features of self-regulation will not only achieve PBM’s originalpurpose of immersive experience but also empower the students in the sense of becoming activeagents seeking to achieve goals through self-reflection and self-adjustment [8].Under the framework of social cognitive theory of learning mainly driven by Albert Bandura [5,6], people, and not environmental forces, are the predominant causes of their own behavior [9].This personal agency, the potential to control our own behavior, grows out of our skills of self-control and
? Methodology We employed weekly academic classifications in an early warning system (EWS)for students in an undergraduate engineering course at a research-intensive university inthe Midwest. Coupled with the EWS, we used data from students’ use of variousinstructional technologies during the course through a digital coaching application calledE2Coach. The E2Coach system provides students with a variety of resources including:weekly help messages, exam preparation (before the exam) and reflection (after theexam) tools, a weekly checklist of tasks that will help students prepare for the class, agrade calculator so students can estimate their grade based on past and planned futureperformance, and various online systems for reviewing academic
traditional,descriptive ones. Furthermore, as new technologies continue to progress rapidly and coursecontent and laboratory instrumentation continue to evolve in order to keep pace, laboratorymanuals will also have to be revised frequently in order to stay relevant and effective. A laboratory manual revision process was developed in this study in order to supportthese new types of laboratory classes. It is a four-step process, which includes: 1) CollectingAudience Responses, 2) Scaffolding the Class Project, 3) Project Report Writing Requirementand 4) Peer-Review and Reflection. This development was carried out based upon the technicalwriting framework, as it is believed that technical writing can promote critical thinking andactive learning
simulated projects possess the potential to provideunique learning opportunities particularly, designed experiences triggering different emotionswithin the structures of the traditional classroom.KeywordsExperiential learning, simulations, constructionIntroductionThis paper discusses the use of a small-scale design-bid-build project simulation to provideexperiential learning for construction management students in the College of Engineering andTechnology at Brigham Young University. Experiential learning opportunities like this allowstudents to explore the implications of principles and theories of the industry by learning in theclassroom through their own direct, lived experience in a low risk setting. Reflecting on theirexperiences helps them
industry (see Figure 1 forbreakdown of participants’ organization types). Most responses (85%) were received from theWest/Mid-West region of the United States, and the results presented in this work reflects thesefindings. The answers were considered as those from potential participants indicating theirpersonal preferences on different aspects of the program. In this survey, participants were askedseveral questions relating to professional development for engineering educators in college andindustry. 2-year academic Non-profit institution, organization 89
directed at different audiences. After writing a brief reflection ondescription the similarities and differences between the two articles, they will be provided with publication details and asked to reflect on how information format affected their perceptions.Expectation Time to complete: 25-30 minutes Time to grade: 3-5 minutes Read and compare the following two articles on bridge design (article 1, article 2). Briefly describe the differences and similarities between the two articles as well as any points on which you think the authors are in disagreement. ***students submit brief compare/contrast responses*** David P
innovative freeform modeling capabilities.The multidisciplinary teams include students, mostly seniors, from systems engineering anddesign, mechanical engineering, bioengineering and industrial design. The design projectsconsist of biomedical products and devices, and each project includes a sponsor from thehealthcare industry. The instructors include faculty from systems engineering and design,industrial design, and bioengineering.Using this testbed, a graduate student conducted research on reflective practice, design thinking,and how students engage in and use digital tools for design and collaboration. The initialresearch was conducted in the fall of 2015. Project results include a five-minute video thatdescribes student impressions of their
outcomes.This paper will explore successful engineering and design pedagogy case studies, taken from courseworkand curricula at Ohio State University and at Columbus College of Art & Design. These stories andchallenges will be explained to highlight what can emerge from creating curricula around open-endeddesign pedagogy, which serves to mimic real world, often ‘wicked’ scenarios. By describing engineeringand design programs doing similar pedagogical activities, the authors will reflect on their own classroomexperiences, discuss lessons learned, and propose a framework that instructors can call upon to encouragestudents to embrace ambiguity, thus becoming more agile and resilient in the future.Each author has taught the case study courses for
or set of individuals collecting, handling, and analyzingdata14. Qualitative research acknowledges the role of the researcher as a filter: data arecollected, organized, and interpreted, and an attempt to reduce bias is unnecessary15.Qualitative researchers must confront the subjective nature of the researcher in connectionwith the process of research. Given that IPA acknowledges that this bias cannot be removedfrom any stage of the study, bias is a topic that cannot be ignored or delayed as it has animpact on validity throughout the research process. Therefore, reflecting upon anddocumenting the position of each researcher and how he or she approaches the data is anintegral part of the interpretive paradigm16 and of IPA9