create andupdate an online open portfolio in the form of a small website with descriptions of their finalcourse projects (referred to as capstone projects). In their portfolios the youth includedescriptions of their design processes, as well as, the failures and challenges they faced. Thewebsites are usually media-rich and include images and videos. Instructors often view thesewebsites during the courses and afterwards and provide the youth with feedback. Asrecommended by previous research [17], this usage of open portfolios is a form of qualitativeassessment that incorporate learning, self-reflection and self-expression as part of theassessment.Another key activity at DHF that supports the youth’s self-reflection and self-expression is
and sensors formeasuring common engineering quantities such as pressure, strain, temperature, etc. In addition,this course serves as the primary lab experience in thermofluids, covering experimentaltechniques for measuring heat transfer coefficients, analyzing heat exchanger efficiency, andmeasuring wind turbine behavior in a wind tunnel. A term long group project requires students todevelop, execute, and report on a measurement experiment of their own choosing. This course isdesigned to particularly prepare students for their senior year capstone design experience bygiving them practice in open ended projects and higher level analysis skills. The author hastaught this course as the sole instructor since Fall 2010.ME4505 has seven major lab
-g depict locations dedicated to CNC mills, variouscutting tools, and hand tool stations. The Studio layout also indicates the locations of the wetlab,welding area, light machinery, heavy machinery, and laser cutters. The Innovation Studio hasfour full-time machinists on staff, a lab manager, and several undergraduate employees.Figure 1. Innovation Studio layout.Since its inception, the Innovation Studio has supported numerous activities including seniordesign/capstone projects, student recruitment, workshops, trainings, seminars and outreachevents. The mission of the Innovation Studio is to provide a student-centric, project-focusedcollaborative shared space and equipment to the greater Drexel community in support ofinnovative educational
the Graduate Reference Curriculum for Systems Engineering (GRCSE). Before joining Stevens, Henry spent nine years with the Aeronautical De- velopment Agency, Ministry of Defense, India, working on aircraft design, aerodynamics, performance, optimization, and project management of the Air Force and Navy versions of the Indian light combat air- craft. He was also actively involved in promoting systems engineering among the aerospace community in India.Dr. Charles Daniel Turnitsa, Regent UniversityProf. Cheryl Beauchamp, Regent University Current Position: Chair, Engineering and Computer Science Department of the College of Arts & Science, Regent Univer- sity, Virginia Beach, Virginia Education: •Ph.D
Associate through the Eval- uation Consortium at the University at Albany/SUNY and Gullie Cnsultant Services/ZScore. She was the principal investigator in several educational grants including an NSF engineering grant supporting Histor- ically Black University and Colleges; ”Building Learning Communities to Improve Student Achievement: Albany City School District” , and ”Educational Leadership Program Enhancement Project at Syracuse University” Teacher Leadership Quality Program. She is also the PI on both ”Syracuse City School District Title II B Mathematics and Science Partnership: Science Project and Mathematics MSP Grant initiatives. She is currently the principle investigator on a number of grants including a 21st
United States Military Academy, West Point, New York. Dr. Barry holds a Bachelor of Science degree from Rochester Institute of Technology, a Master of Science degree from University of Colorado at Boulder, and a PhD from Purdue University. Prior to pursuing a career in academics, Dr. Barry spent 10-years as a senior geotechnical engineer and project manager on projects throughout the United States. He is a licensed professional engineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering accomplishments. He has authored and co-authored a
learning to usethe practices that engineers use to solve problems. Undergraduate engineering programs all haveintended learning outcomes aimed at these practices, such as “an ability to design and conductexperiments, as well as to analyze and interpret data” and “an ability to design a system,component, or process to meet desired needs within realistic constraints” [10]. As noted above,these practices are highly valued by employers, who note that recent college graduates often lackproficiency with these practices [11]. The ideal place to learn these practices is in the real world,making capstone projects, internships, and other activities that require students to work onauthentic problems highly valued experiences. However, putting students in the
’ understanding of the ethics of assisted reproduction, within a social-technicalcontext of multiple human and non-human actors. ANT has also been a very helpful toolfor teaching UVA’s STS 4600: “Engineering Ethics.” Through that course students aresupported in writing their Undergraduate Thesis, from a design project based largely onthe capstone project within their majors. The STS 4600 engineering ethics course guidesstudents to identify a research question related to their capstone project, to incorporatesocial and ethical considerations. For example, as one student wrote, in synthesizing hercapstone project and STS 4600 research [9]: Many of the technologies schools are incorporating in the classroom are merely being used for
to the Design Contest’s successin fostering environmental education awareness, students commonly state that it is the bestexperience of their time at College.Further, faculty advisors note the rigor of the competition, alignment and invaluablecontributions to ABET accreditation needs, and access to direct feedback from industry andgovernment agency professionals, who serve as judges. The WERC Environmental DesignContest has become the main engineering capstone project for a number of universities such asLouisiana State University, Montana Tech, University of Arkansas, the University of CaliforniaRiverside, University of New Hampshire, and the University of Idaho.Lastly, environmental professionals, who serve as judges for the competition
has authored and co-authored over 50 articles. Her publications have appeared in the Journal of Science Teacher Education, Journal of Research in Sci- ence Teaching, School Science and Mathematics, Science Scope, and Science and Children. Professor Czerniak is co-author of a textbook published by Routledge on project based science teaching. She also has five chapters in books and illustrated 12 children’s science education books. Most recently, Czerniak authored a chapter entitled Interdisciplinary Science Teaching in the Handbook of Research on Science Education, published by Lawrence Erlbaum and Associates. Professor Czerniak has been an author and director of numerous grant funded projects in excess of $30
Paper ID #23018Is a Virtual Reality-based Laboratory Experience a Viable Alternative to theReal Thing?James R. McCusker Ph.D., Wentworth Institute of Technology James R. McCusker is an Associate Professor at Wentworth Institute of Technology in the Department of Electrical Engineering. Since joining Wentworth in 2010, he has been heavily involved with an array of interdisciplinary design courses that range from introductory to capstone courses.Mr. Mohammed A. Almaghrabi, Wentworth Institute of Technology Mohammed A. Almaghrabi is a Trainee Engineer at ASM Process Automation, where he helps developing factory automation
. He instructs/coordinates undergraduate labs including Bioinstrumentation, Biotransport, and Capstone Senior Design. He also serves as the school’s ABET coordinator. Asem received his BS and MS degrees in Bioengineering from the University of Toledo in Toledo, Ohio.Dr. Erica Lott, Purdue University, West Lafayette (College of Engineering) Dr. Erica Lott is an Instructional Developer at the Center for Instructional Excellence at Purdue University in West Lafayette, IN. She earned her Ph.D in College Science Teaching specializing in Earth Sciences from Syracuse University. Her research interests include, but are not limited to: learners’ understanding and representation of physical phenomena, course transformations
to teach engineering, only their personalunderstanding of what engineering is. In another study, teachers were taught about engineering,engineering design, and technology integration [9]. Data from these teachers and their studentswere collected; however, results are not publicly available for privacy reasons [9]. Of particular interest is a study on practicing teachers taking a graduate course onbridging engineering and education. The specific purpose of this course was to improve the self-efficacy of the teachers for teaching engineering through discussion of readings, working insmall teams on engineering activities, and a final design capstone project [8]. For the women inthe course, their self-efficacy in tinkering and technical
IT 424 Computer System Security for IT (3) ElectiveSummer: MGT 471 Project Management (3) Required IT 499 Capstone Project (2) RequiredAdditional BSIT Graduation Requirements: 12 Units of additional IT Electives: Any IT course may be taken as an elective, such as: IT 402 Advanced IT Programming (3) IT 400 e-Commerce (3) IT 401 Web Intelligence (3) IT 469 Artificial Intelligence & Neural Networks for IT (3) Other courses may be considered as electives, such as: Art 324 Web Design (3) Art 326 3D Animation (3
Paper ID #21713Assessing and Enhancing Standards Education for Environmental Manage-ment and SustainabilityDr. Deanna H. Matthews, Carnegie Mellon University Dr. Deanna H. Matthews is Associate Department Head for Undergraduate Affairs and Associate Teach- ing Professor in Engineering and Public Policy at Carnegie Mellon University. She serves as the academic advisor to undergraduate students in the department and teaches introductory and capstone courses for engineering students to understand the complex nature of technology solutions in society. Her research interests include developing student meta-cognition and
Engineers. 2. AmericanSociety for Engineering Education 3. Society of Automotive EngineeringPROPFESSIONAL SERVICE ABET Program Evaluator Member, Board of Advisors, Prince George’sPublic Schools Project Lead the Way U.S. Representative for IJSO (International Junior Science Olympiads) c American Society for Engineering Education, 2018 Changing Mindsets, Transforming Learning Environments: A Collaborative Approach to Innovation and EntrepreneurshipIntroductionThe national government of the United Arab Emirates has set transitioning to a knowledge-basedeconomy, including the promotion of innovation and entrepreneurship, as a key pillar of itsVision 2021 National Agenda [1]. With this initiative, the country
and the director of Missouri’s Dam and Reservoir Safety Program. Since 1993, he has been at the University of Evansville, serving as a professor, department chair, and interim dean. He continues to work as a consultant on projects involving the design and construction of new dams, modifications to existing dams, and the investigation of dam failures.Dr. Matthew K. Swenty, Virginia Military Institute Matt Swenty obtained his Bachelors and Masters degrees in Civil Engineering from Missouri S&T then worked as a bridge designer at the Missouri Department of Transportation. He went to Virginia Tech to obtain his Ph.D. in Civil Engineering and upon completion worked at the Turner-Fairbank Highway Research Center
is adjunct faculty at Brigham Young University in the Ira A. Fulton College of Engineering and Technology. She is a Coordinator for Women in Engineering and Technology (WE@BYU), teaches and advises numerous Mechanical Engineering Capstone senior design teams, teaches Global Engineering Outreach with study abroad to Peru, and researches with the Compliant Mechanisms Research Group. She received her bachelor’s and master’s degrees in Mechanical Engineering from BYU and also worked at Ford Motor Company as a manufacturing and design engineer in Automatic Transmission Operations. Terri received the Adjunct Faculty Excellence Award from Brigham Young University in 2016. She is the mother of four children and is married
groups to uncover their own thought and biases before discussing difficult orcontroversial topics surrounding engineering innovation with the class as a whole. While thecourse is taught specifically with engineering design in mind, the course has attracted studentsfrom varying majors which has fostered collaboration and creativity in idea generation. Thecombination of critical thinking methodology with innovation concepts has led students to notonly expand their knowledge of potential applications of engineering, but has lead severalstudents to initiate communication with faculty members regarding their ideas for researchopportunities, innovation competitions, and initiated their own projects via applying forUniversity Innovation Fellows
Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per
attendance ischecked in every class with considerable penalty for unexcused absences. The course was taughtin two separate sections by two instructors.Summary of activitiesThe weekly activities listed in Table 2 are described in more detail in this section.Week 1 - A presentation was given to introduce students to mechanical engineering as adiscipline and the numerous career opportunities in the field. Students were also introduced tothe Department of Mechanical Engineering, including faculty members, research areas, thecurriculum, minors, advising resources, student clubs, and previous Capstone projects. Theassociated assignment asked students to write a short report (using Word) in which they (1)explain their choice of ME as a major, (2) select a
only did the students benefit from ourcollaboration, I learned much from the experience.Lastly, my involvement with our senior capstone design course is as part of a faculty team. I havethe ability to unpack and discuss design decisions with my more experienced, licensed colleagues.This co-teaching experience provides not only a rich learning experience for the students; I againlearn much from the process. Little do the students know how much homework I do. Senior designpushes me beyond what I know every year. Even a colleague with consulting experience reflectedthat this is the case for him as well. With a mentor (academic and/or practitioner) to vet approachesand assumptions, I think each capstone project is the ultimate learning experience
new engineering education strategies as well as the technologies to support the 21st century classroom (online and face to face). He also has assisted both the campus as well as the local community in developing technology programs that highlight student skills development in ways that engage and attract individuals towards STEAM and STEM fields by showcasing how those skills impact the current project in real-world ways that people can understand and be involved in. As part of a university that is focused on supporting the 21st century student demographic he continues to innovate and research on how we can design new methods of learning to educate both our students and communities on how STEM and STEAM make up
understand theinfluences of positions and other critical factors and their interaction effects. Due to the variedapplication of RFID, the authors have incorporated the experimental set up in undergraduate,Senior Project capstone course with team members drawn from both Mechanical andMechatronics Engineering technology.IntroductionRadio frequency identification (RFID) is a broad term that is used to describe a system thattransmits the identity (in the form of a unique serial number) of an object wirelessly, using radiowaves and categorized as an automatic identification technology. RFID is designed to enablereaders to capture to capture data on tags and transmit it to a computer system- without needing aperson to be involved. The different components
capstone design courses, including the longstanding core senior design sequence and the recently launched interdisciplinary medical product development course. She also serves as co-Director of the Freshman Engineering Success Program, and is actively involved in engineering outreach for global health. Miiri received her Ph.D. in Bioengineering and M.S. in Mechanical Engineering from the University of Illinois at Chicago and a B.S. in General Engineering from the University of Illinois at Urbana Champaign.Dr. Jennifer D. Olson, University of Illinois at Chicago Jennifer Olson is a clinical assistant professor in the College of Education at University of Illinois at Chicago. She coordinates the Secondary Education
-EWB participants. A higherpercentage of those with internship experiences rated teamwork in the top five importantoutcomes, and a lower percentage rated attitudes among the five least important outcomes. Thosewith future career interests in construction engineering rated project management in the top fiveimportant outcomes with higher frequency; students with structures career interests believeddesign to be more important; fewer students with water and/or environmental career aspirationsrated globalization among the least important outcomes. Content analysis of an open-endeddiscussion of the BOK2 found that the majority of students (93%) had overall positivestatements. Some promoted the inclusion of creativity and innovation as a new outcome
,and striving to form symbiotic partnerships between local industry and academiathrough: capstone projects, theses work with practical overtones, and applied researchprojects in selected domains, is extremely desirable and beneficial. Today, with theengineering profession undergoing dramatic changes on many fronts - there is realneed for faculty and students, to become involved with practical problems and toshare in providing solutions. We owe it to our students to prepare them to meet thechallenges ahead by focusing on real issues derived from tangible situations. Thesurest road to having a working college-industry relation is to come to a mutualunderstanding that both parties would gain from such a relationship.The discussion noted above may
can build self-efficacy directly and encourage moremastery experiences.Contextual examples of each of Bandura’s four sources of self-efficacy in undergraduateengineering education: first, mastery experiences could consist of completing practice problemsto master theory, engaging in project work and hands-on activities to build engineering skills,and successfully working in teams and giving technical presentations. Second, role models whoshare a similar identity in populations of upper year students, alumni, outside speakers, or facultymay provide vicarious experiences. Third, classmates, teaching assistant, professors, mentors,friends and family may all provide social persuasion, and fourth, an individual's’ personal orextra-curricular
realized how time intensive and expensivethe test would be. She decided to adjust her proposed method of analysis to the readily accessibleHACH Method. She put together the list of materials for testing and ordered it. Not longafterward, she realized she had ordered double what she needed. Luckily, with the help of facultyhere in the department, that mistake turned into an advantage for Melissa and three other studentsto use that extra testing material for capstone projects. She went through lab safety training, andprepared herself for experiments to be completed in the lab. For the first three lab meetings, hermentor was doing the experiments with her; after these supervised experiments, she felt ready toconduct the following procedures
mentoring and guiding student teams through the senior design capstone course and a translational course following senior design. To promote biomed- ical/bioengineering, Marcia works with Women in Engineering to offer outreach activities and served at the national level as Executive Director of the biomedical engineering honor society, Alpha Eta Mu Beta, from 2011-2017.Mrs. Madeline R Darling, University of Illinois at Urbana-Champaign Maddie is an Undergraduate Programs Coordinator for the Department of Bioengineering at the University of Illinois at Urbana-Champaign. She holds a M.S. in College Student Affairs from Eastern Illinois University (2016). Her research interests include student academic success, retention