design for Wheel Loaders. He then joined Ford Motor Company / VisteonCorporation in 1999 as a Senior R&D engineer where he led the fault tolerant design of Drive-By-Wiresystems. He joined Purdue School of Engineering and Technology at Indiana University Purdue Uni-versity at Indianapolis (IUPUI) to develop coursework and to establish a funded research program in thearea of Mechatronics and Controls in 2004. In his recent grant from National Science Foundation (NSF),he is currently leading a team to develop graduate courses and research projects to enhance creativityand innovativeness in the area of design and mechatronics. Dr. Anwar has published over 120 papers inpeer-reviewed journal and conference proceedings. He is also listed as an
projects, and working with faculty to publish educational research. Her research interests primarily involve creativity, innovation, and entrepreneurship education.Dr. Esther W. Gomez, Pennsylvania State University Dr. Esther Gomez is an assistant professor in the Departments of Chemical Engineering and Biomedical Engineering at the Pennsylvania State University. Dr. Gomez’s research focuses on exploring how the interplay of chemical and mechanical signals regulates cell behavior and function and the progression of disease. She is also the Co-Director of a National Science Foundation sponsored Research Experience for Undergraduates program focused on the Integration of Biology and Materials in Chemical Engineering.Manish
engineering projects course at theUniversity of Colorado at Boulder, Knight et al. found that students who took the coursedemonstrated increased retention when compared with their peers who did not take the course [3].When Knight et al. discussed possible explanations for this increased retention, they attributed itto “the impact of active hands-on pedagogy, creation of student learning communities, an earlyexperience on the human side of engineering, self-directed acquisition of knowledge by students,instructor mentoring, and the success orientation of the course” [3]. It has been shown that ifstudents have a strong, positive conviction about their knowledge in engineering, then they aremore likely to succeed academically in the specific subject, as
Award for Excellence in Teaching (2017), COE Excellence in Teaching Award (2008, 2014), UIC Teaching Recognitions Award (2011), and the COE Best Advisor Award (2009, 2010, 2013). Dr. Darabi has been the Technical Chair for the UIC Annual Engineering Expo for the past 7 years. The Annual Engineering Expo is a COE’s flagship event where all senior students showcase their Design projects and products. More than 700 participants from public, industry and academia attend this event annually. Dr. Darabi is an ABET IDEAL Scholar and has led the MIE Department ABET team in two successful accreditations (2008 and 2014) of Mechanical Engineering and Industrial Engineering programs. Dr. Darabi has been the lead
Design from Stanford University and an MBA from The Wharton School at the University of Pennsylvania, specializing in Entrepreneurial Management. Prior to joining Mines she spent 20 years as a designer, project manager, and portfolio manager in Fortune 500 companies and smaller firms in the Silicon Valley and abroad. She is passionate about bringing the user-centered de- sign principles she learned at Stanford and in her career to Mines’ open-ended problem solving program, and is working with others on campus to establish a broader integrated context for innovation and design. c American Society for Engineering Education, 2018 Increasing Student Empathy Through Immersive Stakeholder
currently working with Dr. Stolk on an NSF-supported project to understand students’ motivational attitudes in a variety of educational environments with the goal of improving learning opportunities for students and equipping faculty with the knowledge and skills necessary to create such opportunities. One of the founding faculty at Olin College, Dr. Zastavker has been engaged in development and implementation of project-based experiences in fields ranging from sci- ence to engineering and design to social sciences (e.g., Critical Reflective Writing; Teaching and Learning in Undergraduate Science and Engineering, etc.) All of these activities share a common goal of creating curricular and pedagogical structures as well
. Plant Layout 16. Cellular Mfg. 17. Ergonomics 18. Inventory Control 19. Procurement 20. Project Management 21. Process ImprovementBefore teaching the course for the first time, the author observed the previous instructor andteam-taught several class periods. During the author’s first time teaching the course (FallSemester 2016), an effort was made to preserve the structure, content, and teaching style as muchas possible. Towards the end of the course, the author gave an extra credit opportunity if studentswould come give feedback on the course. At the end of the course, students were alsoencouraged to give anonymous feedback through the university. Some of the comments
design, design thinking, and design innovation project courses. Dr. Lande researches how technical and non-technical people learn and apply design thinking and making processes to their work. He is interested in the intersection of designerly epis- temic identities and vocational pathways. Dr. Lande received his B.S in Engineering (Product Design), M.A. in Education (Learning, Design and Technology) and Ph.D. in Mechanical Engineering (Design Education) from Stanford University.Dr. Shawn S. Jordan, Arizona State University, Polytechnic campus SHAWN JORDAN, Ph.D. is an Associate Professor of engineering in the Ira A. Fulton Schools of En- gineering at Arizona State University. He teaches context-centered electrical
Department of Civil & Mechanical Engineering at the United States Military Academy, West Point, New York. Dr. Barry holds a Bachelor of Science degree from Rochester Institute of Technology, a Master of Science degree from University of Colorado at Boulder, and a PhD from Purdue University. Prior to pursuing a career in academics, Dr. Barry spent 10-years as a senior geotechnical engineer and project manager on projects throughout the United States. He is a licensed professional engineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering
design courses [3]. The Milwaukee Schoolof Engineering BME program has traditionally followed the latter approach. The approach wasefficient, requiring no additional course credits, and it was effective in targeting mature studentswho had some appreciation for the importance of the topics. However, data collected fromstudents through surveys conducted in the design courses and at the time of graduation revealedseveral disadvantages of the approach, including: 1. Coverage of the topics was not always timely in its application to design projects, because projects progress at different paces. 2. Students struggled to remain attentive to lectures that focused on the background and theoretical application of these topics. 3
Engineers. She serves on the editorial board of the Bioelectromagnetics Society.Dr. Adam Kirn, University of Nevada, Reno Adam Kirn is an Assistant Professor of Engineering Education at University of Nevada, Reno. His re- search focuses on the interactions between engineering cultures, student motivation, and their learning experiences. His projects involve the study of student perceptions, beliefs and attitudes towards becoming engineers, their problem solving processes, and cultural fit. His education includes a B.S. in Biomedical Engineering from Rose-Hulman Institute of Technology, a M.S. in Bioengineering and Ph.D. in Engineer- ing and Science Education from Clemson University.Dr. Jennifer R Amos, University of
Motivation in STEM Using Culturally Relevant ContextsIntroductionThe purpose of this multi-year National Science Foundation (NSF) project is to design, implement,and evaluate integrated culturally relevant (CR) model-eliciting activities (MEAs) usingcommunity issues as the context for learning. To ensure cultural and career relevance the design ofthe CR MEAs is driven by societal challenges connected to community issues, to engageunderrepresented minority (URM) middle school students in CR MEAs that will develop theirlevel of community engagement, career exploration, STEM knowledge, and literacy. Teacherprofessional development was conducted to prepare teachers to utilize integrated CR MEAs in theirclassrooms as a context for learning.This project
Paper ID #23476Student Learning Trajectories from Making and Engineering ActivitiesDr. Micah Lande, Arizona State University Micah Lande, Ph.D. is an Assistant Professor in the Engineering and Manufacturing Engineering pro- grams and Tooker Professor at the Polytechnic School in the Ira A. Fulton Schools of Engineering at Arizona State University. He teaches human-centered engineering design, design thinking, and design innovation project courses. Dr. Lande researches how technical and non-technical people learn and apply design thinking and making processes to their work. He is interested in the intersection of
Engineering (ILead). She completed her PhD at the Massachusetts Institute of Technology (MIT) studying product development decision-making during complex industry projects. Dr. Olechowski completed her BSc (Engineering) at Queen’s Uni- versity and her MS at MIT, both in Mechanical Engineering. Dr. Olechowski studies the processes and tools that teams of engineers use in industry as they design innovative new products. She has studied engineering products and projects in the automotive, electronics, aerospace, medical device and oil & gas industries.Ms. Madeleine Santia c American Society for Engineering Education, 2018 Examining the Engineering Leadership Literature: Community of
Lisa D. McNair is a Professor of Engineering Education at Virginia Tech, where she also serves as Director of the Center for Research in SEAD Education at the Institute for Creativity, Arts, and Technology (ICAT). Her research interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, liberatory maker spaces, and a RED grant to increase pathways in ECE for the professional formation of engineers.Dr. Donna M. Riley, Purdue University, West Lafayette (College of Engineering) Donna Riley is Kamyar Haghighi Head of the School of Engineering Education and
Polmear is a PhD student in the Department of Civil, Environmental, and Architectural Engi- neering at the University of Colorado, Boulder.Dr. Chris Swan, Tufts University Chris Swan is an associate professor in the Civil and Environmental Engineering department at Tufts University. He has additional appointments in the Jonathan M. Tisch College of Citizenship and Public Service and Center for Engineering Education and Outreach at Tufts. His current engineering education research interests focus on learning through service-based projects and using an entrepreneurial mindset to further engineering education innovations. He also researches the development of reuse strategies for waste materials.Dr. Daniel Knight
Paper ID #23916Regional Innovation Cluster: The Role of the Entrepreneurship as a Tool forClosing the Gap Between Engineering Education and the Challenges of theLocal Communities.Miss Diana Duarte, Distancia Cero Industrial Engineer and Master of Science in Industrial Engineering with emphasis in organizational man- agement from Universidad de los Andes Colombia. Her work experience is focused on research and project management with social and environmental impact in the educational context and the public sec- tor.Mr. David Leonardo Osorio, Distancia Cero Professor at Universidad Sergio Arboleda, Colombia. Professor at
developed and taught by community collegeand university engineering faculty features lectures, hands-on workshops, demonstrations,panels, field trips, team-building activities, social events, and group projects. The curriculumintroduces students to the engineering education system in California, as well as the skills,knowledge, and resources needed to succeed in college, including details on alternative paths toan engineering career. Most mornings of the two-week program are devoted to lectures andpresentations, with group activities and hands-on workshops in the afternoon to reinforceconcepts learned from the lectures. Some afternoons are devoted to field trips, and most eveningsto working on group projects. There are four culminating group
themes in engineering have focused on sustainability, entrepreneurship, designthinking, internationalization and social justice (Murphy et al., 2009; Tranquillo 2013;Tranquillo 2017; UNESCO 2010). As improved health care intersects all of these trends,biomedical engineers are well suited to take on leadership roles. In parallel, pedagogicaltrends have moved toward design challenges, wicked problems, project-based learningand engagement with live case studies (Blumenfeld et al. 1991; Prince 2004; Omenn2006; Bell, 2010; Beaurey 2010; Mote et al, 2016). Biomedical engineering faculty havein fact led the way in developing many of these learning opportunities (Tranquillo andCavanagh 2009; Gimm 2011; Abby et al., 2013; Dolan 2013).This paper outlines
, academic engineering curricula tends to focus on developing thetechnical skills of the students, overlooking the soft skills or 21st century skills that are just asimportant. The 21st century skills include critical thinking, communication, teamworkcollaboration, metacognitive awareness, and creativity. Developing such skills will enable futureengineers to effectively engage in interdisciplinary endeavors and adapt to changes in nationalpolicies and emergent technologies. This paper presents a project that integrates 21st century skilldevelopment (i.e., metacognitive awareness, constructive thinking, and communication) into amanufacturing systems course. In this course, students learn about manufacturing systemsthrough a series of teamwork-based
of Teaching & LearningIntroductionTeaching practices falling under the general area of active learning have been shown likely toimprove student learning outcomes in undergraduate STEM courses (Freeman, Eddy et al. 2014).At the University of Nebraska-Lincoln (UNL), an NSF funded project has sought to raiseawareness of and support proficiency in active learning in STEM. Several UNL civilengineering faculty have participated in the activities of this program and individually they haveimplemented teaching practices such as peer instruction in their classes. To better support effortsof individual civil engineering faculty (both those participating in the NSF funded program andthose not) in the use of active learning teaching practices, a
wanted to keep the college’s goal of having the building itselfbe the learning tool. In response to the request from the college, Trane employees worked alongside thecollege faculty to assist the college in achieving this goal through a few different projects. The first projectcompleted through this partnership was the installation of a one-ton water source heat pump created byTrane. Trane employed a current Lipscomb engineering student for a summer internship with the specificpurpose of being involved in this project. Trane had a vision to install the water source heat pump to be astand-alone unit to be utilized as a testing device for engineering students in thermal-fluids courses. Theunit has seventeen different types of sensors for a total
in partnership with theCenter for Aquatic Sciences (CAS) at the Adventure Aquarium. The CAS promotes theunderstanding and appreciation of aquatic sciences and provides outreach programs for a largepopulation of students in Camden, NJ and surrounding communities [1]. The partnership willallow the Algae Grows the Future project to expand its reach and will provide material for CASto implement. The theme of algae was selected because of the wide range of applications ofalgae, ease of growth and maintenance, and accessibility to any classroom. The Algae Grows theFuture team aims to promote a high quality engineering education, along with the integration ofhumanities to improve students’ understanding of the connections between the two fields.1.2
ofthe ABET a-k outcomes. We frame developing the required engineering skills from thefoundation of their individual strengths. Our “One-Minute Engineer” assignment requiresstudents to describe why they are pursuing engineering as a career path. Again, the frameworkof StrengthsFinder helps students clearly express their motivations.Team projects form the framework for ItE course sequence. We sort students into teams withdiverse Strengths [2]. Students utilize team contracts in which they develop team roles based onindividual Strengths [3]. A team mapping exercise reveals that our engineering students tend tooverpopulate the executing and strategic thinking domains of Strengths. Less stereotypicalengineering students with Strengths in
proper skills to operateand manage their networks. Broadband wireless networks and big data systems are twoimportant technologies that current STEM students need to learn, comprehend and master tosatisfy the market needs. Design and implementation of an academic big-data system andbroadband wireless testbed for instruction and research purposes is a difficult task. In this work,challenges facing the design and implementation of a mobile networks and big-data lab areevaluated. This work aims at providing a comprehensive reporting about an experience gainedfrom designing and implementing an academic lab of big-data system used for broadbandwireless networks traffic analysis and management. Challenges facing the project team duringthe
separate designvectors, and to demonstrate the behavior in a physical test or application. The activities will alsoshowcase different modes of failure of mechanical components, and the uncertainty that lieswithin the material itself or within the process of manufacturing. Focusing the activities in a self-learning group environment, students’ learning experience will be greatly improved in tandemwith their soft skills: reporting, communications, and planning [2].To promote a better interest in the overall learning outcomes, the series of activities arestructured to combine their knowledge and culminate to a final project competition for the designof a planar-truss. A competition can bolster the intellectual maturity of students who begin torealize
. Her areas of expertise are performance-based modeling, project delivery methods, communication networks, and uncertainty and risk analysis in design and construction of transportation projects. She also has industrial experience as a project manager in multiple building construction projects. Dr. Kermanshachi has con- ducted several research projects which were awarded by Texas Department of Transportation (TxDOT), National Cooperative Highway Research Program (NCHRP) and Construction Industry Institute (CII). Dr. Kermanshachi has received several prestigious national and regional awards, including the American Society of Civil Engineers (ASCE) Professional Service Award, ASCE Excellence in Education (Ex- CEEd
aninterdisciplinary team of faculty at San José State University (SJSU). The minor degreecomprises four courses: Python programming, algorithms and data structures, R programming,and culminating projects. The first ACBSS cohort started in Fall 2016 with 32 students, and thesecond cohort in Fall 2017 reached its capacity of 40 students, 62% of whom are female and35% are underrepresented minority students. Considering ACBSS students’ interest in humanbehavior and society, pedagogical approaches using relevant examples and projects have beendeveloped and integrated throughout the program. Preliminary assessments show that studentsappreciated learning programming skills with which to expand their career opportunities whilegaining confidence in studying technical
power electronics. He has been working on thin film solar cell research since 1979 including a Sabbatical Leave at the National Renewable Energy Laboratory in 1993. He has also worked on several photovoltaic system projects Dr. Singh has also worked on electric vehicle research, working on battery monitoring and management systems funded primarily by federal agencies (over $3.5 million of funding). Dr. Singh has consulted for several companies including Ford Motor Company and Epuron, LLC. He has also served as a reviewer for the US Department of Energy and National Science Foundation. Dr Singh has over 100 conference and journal publications and holds six issued US patents. Dr. Singh’s recent work is focused on
cohort and a distance cohort to whomthe lectures were delivered asynchronously. The class included a term project focused onreplacing a part currently in service with a similar part fabricated from composite materials aswell as weekly homework assignments and in-class exams. All students were given pre- andposttests to gauge learning gains over the course and an end-of-term survey was administeredrelated to student perceptions and preferences. Performance results, preference results, andclassifications of submitted muddiest points will be compared between the on-campus anddistance cohorts. Differences in demographics (age, work experience, etc.) are expected topotentially affect the value that each cohort puts on different aspects of the course