Paper ID #23488Work in Progress: An Economical and Open-source Mechanical Testing De-vice for Biomaterials in an Undergraduate Biomechanics Laboratory CourseDr. Julien Henri Arrizabalaga, University of OklahomaDr. Matthias U. Nollert, University of OklahomaDr. Rachel C Childers, University of Oklahoma Dr. Childers is an Assistant Professor of Practice in the Stephenson School of Biomedical Engineering at the University of Oklahoma. She developed and teaches all of the Junior-level biomedical engineering lab courses (6 different core areas) within the department. c American Society for Engineering
conversation and transmission, post-processing, liquid-based AM (stereolithography, polyjet, multijet, aerosol jet, two-photonpolymerization, rapid freeze prototyping), extrusion-based AM (fused deposition modeling,multi jet fusion), powder-based AM (selective deposition lamination, electron beam melting,selective laser sintering, selective laser melting), STL data format, STL file repair, medical andbioengineering applications, benchmarking, and the future of AM.Apart from the lectures, a variety of laboratory projects are integrated and conducted at thenewly formed teaching lab (Stinson lab) in the Department of Industrial, Manufacturing, andSystems Engineering. Specifically, the tasks will contain: (1) infill and structural designs usingFused
Paper ID #21239Developing a Summer Engineering Teaching Institute for Community Col-lege Engineering FacultyDr. Amelito G. Enriquez, Canada College Amelito Enriquez is a professor of Engineering and Mathematics at Ca˜nada College in Redwood City, CA. He received a BS in Geodetic Engineering from the University of the Philippines, his MS in Geode- tic Science from the Ohio State University, and his PhD in Mechanical Engineering from the University of California, Irvine. His research interests include technology-enhanced instruction and increasing the representation of female, minority and other underrepresented groups in
Engineering Education, 2018 Exploring an inquiry-based learning with peer-teaching pedagogy in a physiological signals lab courseIntroduction and BackgroundActive learning can support meaningful engagement with science concepts and practices, whichhas been known to improve students’ affect toward science [1]. Professors recognize theopportunity for students to engage in such active learning during laboratory courses and haveemployed successful methods of doing so that foster meaningful engagement [2,3,4]. Onemethod of active learning and enhancing student engagement is using inquiry-based learning in alaboratory environment. This method also helps to develop creativity and critical thinking skills[8,9] which are
weredeveloped and delivered with the assistance of the National Renewable Energy Laboratory, SolarEnergy International, the Wisconsin K-12 Energy Education Program, and the Colorado Schoolof Mines Teacher Enhancement Program. Additional financial support was provided by theWisconsin Distributed Resources Collaborative. Dr. Penny and Chuck Billman of REGSConsulting provided data gathering and analysis to assess the impact of this work, and additionalevaluation insights have been provided by Dr. Jean Sando. Thanks also to the faculty memberswhose work is profiled in this report. Their efforts to teach the next generation of renewableenergy consumers and professionals are an inspiration for us all.References[1] SPE. Global Market Outlook for Solar Power
Paper ID #22068Additive Manufacturing Studios: a New Way of Teaching ABET StudentOutcomes and Continuous ImprovementDr. Ismail Fidan, Tennessee Technological University Currently, Dr. Fidan serves as a Professor of the Department of Manufacturing and Engineering Tech- nology at Tennessee Technological University. His research and teaching interests are in additive man- ufacturing, electronics manufacturing, distance learning, and STEM education. Dr. Fidan is a member and active participant of SME, ASEE, ABET, ASME, and IEEE. He is also the Associate Editor of IEEE Transactions on Components, Packaging, and Manufacturing
Paper ID #22685Combining Course Flipping and a Low-Cost Experiment to Teach FrequencyResponseDr. Ryan W Krauss, Grand Valley State University Dr. Krauss received his Ph.D. in mechanical engineering from Georgia Tech in 2006. His research inter- ests include modeling and control design for flexible robots, feedback control, and microcontroller-based implementation of feedback control systems. In addition to the freshmen introduction to engineering de- sign course, he has taught courses in mechatronics, controls, vibrations, dynamics and robotics as well as senior design. c American Society for
Paper ID #22451Teaching Genomics and Genomic Technologies to Biomedical Engineers: Build-ing Skills for the Genomics WorldDr. Karen R. Thickman, University of Washington Karen R. Thickman is a lecturer in the Department of Bioengineering at the University of Washington. She received an A.B. in biophysical chemistry from Dartmouth College, and a Ph.D. in molecular bio- physics from the Johns Hopkins University School of Medicine. She was an assistant teaching professor at Carnegie Mellon University in the Computational Biology Department for five years before transitioning to the University of Washington. Thickman’s teaching
-regulated learning, self-efficacy,and general well-being [5]. In our study, we explored whether we could help students persist inengineering by encouraging such positive learning dispositions and behaviors.In this work-in-progress paper, we report preliminary results from a one-credit course called“Engineering the Mind.” We used design-based research and the Transtheoretical Model (TTM)of Health Behavior Change to design the course and assess the outcomes. The goal of the coursewas to encourage students to adopt positive learning dispositions and behaviors by teaching themhow the brain works.BackgroundDesign-based research (DBR) is a research method that evaluates theory-based interventions(that were developed in laboratory conditions) in complex
University (NYU), NY, USA. His research and teaching interests in- clude robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, en- gineering psychology, virtual reality, artificial intelligence, computer vision, biomimetics and biomechan- ics with applications to industrial manipulation and manufacturing, healthcare and rehabilitation, social services, unmanned autonomous vehicle (aerial and ground, indoor and outdoor) systems and STEM education.Mrs. Veena Jayasree Krishnan, New York University Veena Jayasree Krishnan received a Master of Technology (M. Tech.) degree in Mechatronics from Vel- lore Institute of Technology, Vellore, India in 2012. She has two years of research
) simulation sickness –through three symptoms nausea, oculomotor disturbance, and disorientation, 2) VR SystemsUsability – through comfort and ease of use, and 3) User Experience – through involvement,immersion, visual fidelity, interface quality, and sound. Simulation sickness analysis showed thatthe current VR teaching modules need some adjustments. The analysis of the systems usabilityand user experience of the module were found to be acceptable. In phase III of the research, wewill improve the VR module to make a full self-paced tutorial where the instructor’s role will bemore facilitator than an instructor.References[1] B. Dalgarno, A. G. Bishop, W. Adlong, & D. R. Bedgood, (2009). “Effectiveness of a virtual laboratory as a
, 2011.[14] V. Sampson, P. Enderle, J. Grooms & S. Witte, “Writing to learn by learning to write During the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas,” Science Education, vol. 97, issue 5, pp. 643-670, September, 2013.[15] J.P. Walker, & V. Sampson, “Learning to argue and arguing to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course,” Journal of Research in Science Teaching, volume 50, issue 5, pp. 561-596. May, 2013.[16] T.J. Moore, M.S. Stohlmann, H.H. Wang, K.M. Tank, & G.H. Roehrig
, automation, robotics and control, intelligent manufacturing system design, and micro/nano manufacturing. He is also the Director of the Rockwell Automation laboratory at Texas A&M University, a state-of-the-art facility for education and research in the areas of automation, control, and automated system integration. c American Society for Engineering Education, 2018 MAKER: Face Detection Library to Teach Algorithm Basics in PythonAbstractThis paper describes an approach to teach face detection algorithms to beginner levelprogramming learners using a face detection tool built in Python. Learners are expected tounderstand and practice their Python coding skills
2016. His research interests include digital fluid power systems, modeling and simulation of dynamic systems, and component design. c American Society for Engineering Education, 2018 Design of a Transparent Hydraulic/Pneumatic Excavator Arm for Teaching and Outreach ActivitiesAbstractThe purpose of this work is to design and build a miniature excavator arm which can be used as atechnological tool for educational purposes. Many of the miniature excavator arms used ineducation today operate using electronic systems and are made of steel, 3-D printed parts andother opaque materials. This unique design could either be controlled by using hydraulics orpneumatics and is made of Lexan, a
State University Charles T. Jahren is the W. A. Klinger Teaching Professor and the Assistant Chair for Construction Engi- neering in the Department of Civil, Construction and Environmental Engineering at Iowa State University. He earned his Bachelor of Science in Civil Engineering and his Master of Business Administration from the University of Minnesota and his PhD in Civil Engineering from Purdue University. He has over six years of industrial experience as a bridge construction project engineer for a construction contractor and as a research engineer for the Naval Civil Engineering Laboratory in Port Hueneme California. His teaching interests include construction equipment, cost estimating and construction process
. Management of Engineering Systems course material, Engineering Management,Systems and Technology department, School of Engineering, University of Dayton, 2017a.Gentile, J. R., Teaching methods. Salem Press Encyclopedia of Health, January, 2016Hunt, L. et al., “Assessing practical laboratory skills in undergraduate molecular biologycourses,” Assess. Eval. Higher Educ., vol. 37, no. 7, pp. 861–874, 2012.Miller, J., “Case study in second language teaching,” Queensland J. Educ. Res., vol. 13, pp. 33-53, 1997.Popil, I., “Promotion of critical thinking by using case studies as teaching method, “ NurseEducation Today, vol. 31, pp. 204-207, 2011.Swart, A.J., “Does it matter which comes first in a curriculum for engineering students—Theoryor practice?,” Int
Steel Construction, Chicago, IL.[9] Civjan, S. (2010) "Core Teaching Aids for Structural Steel Design Courses" American Institute of Steel Construction. Retrieved from https://www.aisc.org/education/university- programs/ta-core-teaching-aids-for-structural-steel-design-courses/[10] Hale, M., Freyne, S., Durham, S. (2007) “Student Feedback And Lessons Learned From Adding Laboratory Experiences To The Reinforced Concrete Design Course” Proc. ASEE Annual Conf. & Expo., Honolulu.[11] Behrouzi, A. (2016) “Physical Artifacts in Introductory-level Reinforced Concrete Design Instruction” Proc. ASEE Annual Conf. & Expo., New Orleans.[12] Robinson, I. (2002) “Survey of Education and License Requirements for Structural
of improving students’ development along one or more of the patterns. Additionally, we believe CSR is a particularly appropriate method for this study because the method permits teaching practices to be studied in the context of a real classroom. The classroom setting within our case study contrasts the laboratory setting used by a large number of studies that have informed the development of the matrix (e.g., [6][9]). The controlled conditions of these research studies do not accurately reflect engineering practice which often requires engineers to work on teams over long durations to solve complex problems. Additionally, the clinical setting does not reflect an educational setting in which a teacher is available to help guide and
Paper ID #21477Exploring Faculty Beliefs About Teaching Evaluations: What is Missing fromCurrent Measures?Dr. Benjamin David Lutz, Oregon State University Ben Lutz is a Postdoctoral Scholar in Engineering Education at Oregon State University. His research in- terests include innovative pedagogies in engineering design, conceptual change and development, school- to-work transitions for new engineers, and efforts for inclusion and diversity within engineering. His current work explores how students describe their own learning in engineering design and how that learn- ing supports transfer of learning from school into
Paper ID #22201A New Course for Teaching Internet of Things: A Practical, Hands-on, andSystems-level ApproachMr. Nicholas Barendt, Case Western Reserve University Nick Barendt is an Adjunct Senior Instructor in the Department of Electrical Engineering and Computer Science at Case Western Reserve University, in Cleveland, Ohio. He earned his Bachelor of Science and Master of Science in Electrical Engineering and Applied Physics at Case Western Reserve University, in Cleveland, Ohio, in 1995 and 1998, respectively. He has worked in a variety of industries, including Industrial Automation, Robotics, Data Acquisition, and
Paper ID #22374Beyond Our Horizon: Reaching out to Engineering Faculty to Teach SpatialLiteracySylvia George-Williams, Southern Methodist University Sylvia George-Williams is the Engineering Librarian at Southern Methodist University. Before coming to SMU, she was the Engineering Librarian at the University of Texas, Arlington, and at Clemson University. She is also the Interim Head of Access Services at SMU.Jessie Marshall Zarazaga, Southern Methodist University Jessie Zarazaga directs the SMU LIbraries Initiative for Spatial Literacy and teaches GIS and Sustain- ability and Development in the Lyle School of Engineering
service at their university. Instruction style can vary as well with seminars, workshopsand stand-alone courses being used to teach RDM skills. Who teaches RDM can vary just asmuch as the audience: librarians teaching alone or in teams, librarian and faculty combinations,librarian and IT professionals, and any combination of the above including guest speakers. Often,there is preparatory work that may include interviews, laboratory reviews, surveys or other toolsthat aid in getting informative information to facilitate the work toward RDM instruction. Inorder to illustrate the benefits of the team approach to RDM instruction and the trend towardcredit classes, Table 1 compares the course type, date, instructor method, preparatory work andthe
Paper ID #24104Evolving the Teaching and Practice of Project Management: Lessons Learnedon the Path to Living OrderProf. Wayne P. Pferdehirt, University of Wisconsin, Madison Wayne P. Pferdehirt is the director of the Master of Engineering Management program at the University of Wisconsin-Madison. Wayne also co-teaches the program’s Technical Project Management and Founda- tions of Engineering Leadership courses. Prior to joining UW-Madison, Pferdehirt directed the Midwest solid waste consulting services of an international environmental consulting firm and led energy conser- vation research projects for Argonne National
government research lab (Los Alamos National Laboratory). He holds three USPTO patents (IP of Cisco Systems). In addition to a doctorate in Computer Science, Predrag Tosic holds three master’s degrees, two in math- ematical sciences and one in CS. Tosic has a considerable teaching and student research mentoring expe- rience. He has enjoyed working with students of a broad variety of ethnic, cultural and socio-economic backgrounds and at different types of academic institutions. He has been actively involved with IEEE – the Palouse Section and is currently President of the Section’s Computer Society. He is also an active member of ACM, ASEE and AMS.Dr. Julie Beeston, University of Idaho Dr. Julie Beeston has both a
received a NASA/ASEE Summer Faculty Fellowship to research NEMS/MEMS adaptive optics in the Microde- vices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored more than 75 peer-reviewed publications.Mr. Richard Edward Giduck, Drexel University c American Society for Engineering Education, 2018Teaching Fundamentals in Lasers and Light Technology to Advanced Applied Optics in Biology and Biomedical Research, Analyzing the Team Teaching Influence on High School Student’ Perception of and Confidence in STEM (Work in Progress)Vahideh Abdolazimi, Jared Andrew Ruddick, Jessica S. Ward, Richard Edward
is adjunct faculty at Brigham Young University in the Ira A. Fulton College of Engineering and Technology. She is a Coordinator for Women in Engineering and Technology (WE@BYU), teaches and advises numerous Mechanical Engineering Capstone senior design teams, teaches Global Engineering Outreach with study abroad to Peru, and researches with the Compliant Mechanisms Research Group. She received her bachelor’s and master’s degrees in Mechanical Engineering from BYU and also worked at Ford Motor Company as a manufacturing and design engineer in Automatic Transmission Operations. Terri received the Adjunct Faculty Excellence Award from Brigham Young University in 2016. She is the mother of four children and is married
Paper ID #22478Aksense: A General-purpose Wireless Controlling and Monitoring Device forTeaching First-year Electrical and Computer EngineeringDr. Farid Farahmand, Sonoma State University Farid Farahmand is an Associate Professor in the Department of Engineering Science at Sonoma State University, CA, where he teaches Advanced Networking and Digital Systems. He is also the director of Advanced Internet Technology in the Interests of Society Laboratory. Farid’s research interests are optical networks, applications of wireless sensor network technology to medical fields, delay tolerant networks. He is also interested in
; Inclusion. He is investigating university-community engagement as empow- erment settings and working to further the research agenda of the global community of practice within Diversity and Inclusion in Engineering Education. His research laboratory aims to support an inclu- sive, global pipeline of STEM talent and to unify the needs of the engineering education stakeholders in order for engineering education to more accurately reflect societal needs. Diversity and inclusion, univer- sity/community engagement, informal learning, action research, and student led initiatives fall within the scope of his academic endeavors. c American Society for Engineering Education, 2018 A pilot study
Paper ID #22280Work in Progress: Retrospective Analysis on the Perspective of Instructorsabout Transitioning to Using Active-learning Strategies to Teach MechanicalEngineering ClassesMr. Sreenidhi Krishnamoorthy, University of California - Davis Mr. Sreenidhi Krishnamoorthy is a PhD candidate in Mechanical Engineering at the University of Cali- fornia - Davis. He works as a Graduate Student Researcher at the Western Cooling Efficiency Laboratory and as a Teaching Assistant Consultant at the Center for Educational Effectiveness, both on the UC Davis campus. As a Teaching Assistant Consultant, Sreenidhi focuses on improving
Paper ID #21249Comparison of Student Learning and Flight Performance as a Function ofthe Method of Teaching – A Research StudyDr. Adeel Khalid, Kennesaw State University Adeel Khalid, Ph.D. Associate Professor Systems Engineering Office: 470-578-7241Mr. Christopher Douglas Roper Senior physics and mechanical engineering student with minors in aerospace engineering and mathemat- ics. Enrolled in a dual-degree bachelor’s program from the University of West Georgia and Kennesaw State University (formally Southern Polytechnic State University).J. Andrew Pirrello Jr., Kennesaw State University J. Andrew Pirrello recently