Paper ID #25700Integrating Comics Into Engineering Education To Promote Student Inter-est, Confidence, and UnderstandingDr. Lucas James Landherr, Northeastern University Dr. Lucas Landherr is an associate teaching professor in the Department of Chemical Engineering at Northeastern University, conducting research in engineering education. c American Society for Engineering Education, 2019 Integrating Comics Into Engineering Education To Promote Student Interest, Confidence, and UnderstandingAbstractThe use of comics as an educational teaching tool is a practice that has existed for
curriculum change in achemical engineering degree course (WIP)IntroductionA curriculum review can be an intricate and arduous process, made more complex due to amyriad of interwoven threads that inform the curriculum. This is often the case in chemicalengineering due in part to the accommodation of employer expectations, requirements fromaccreditation bodies and the multidisciplinary, integrative nature of an engineering degreewhich depends on students acquiring a wide range of attributes, and which focuses onapplication and relevancy [1], [2]. In this paper, we present our efforts to review the chemicalengineering curricula at a research-intensive higher education institution (HEI) in the UK.This review is being orchestrated by institutional
Paper ID #27019Work in Progress: Twenty Year Evolution of an Outreach ProgramDr. Taryn Melkus Bayles, University of Pittsburgh Taryn Bayles, Ph.D., is a Professor of Chemical Engineering and Vice Chair of Undergraduate Education in the Chemical and Petroleum Engineering Department at the University of Pittsburgh, where she incor- porates her industrial experience by bringing practical examples and interactive learning to help students understand fundamental engineering principles. Her current research focuses on engineering education, outreach and curriculum development. c American Society for
time at Rowan and UMass, she developed a passion for undergraduate education. This passion led her to pursue a career as a lecturer, where she could focus on training undergraduate chemical engineering students. She has been teaching at UK since 2015 and has taught Fluid Mechanics, Thermodynamics, Computational Tools and the Unit Operations Laboratory. She is especially interested in teaching scientific communication and integration of process safety into the chemical engineering curriculum. c American Society for Engineering Education, 2019 Understanding the gap between communication in the classroom and communication during an industrial internshipAbstractWhile it
Paper ID #25464An Interdisciplinary Elective Course to Build Computational Skills for Math-ematical Modeling in Science and EngineeringDr. Ashlee N. Ford Versypt, Oklahoma State University Dr. Ashlee N. Ford Versypt is an assistant professor in the School of Chemical Engineering at Okla- homa State University. She earned her Ph.D. and M.S. degrees in ChE at the University of Illinois at Urbana-Champaign and her B.S. at the University of Oklahoma. She did postdoctoral research at the Massachusetts Institute of Technology. Her research focuses on developing computational models for multiscale tissue physiology and pharmacology
for engineering classes,” J. Eng. Educ., vol. 88, no. 1, pp. 53–57, 1999.[21] K. D. Dahm, S. Farrell, and R. P. Ramachandran, “Communication in the Engineering Curriculum: Learning to Write and Writing to Learn,” J. Eng. Educ. Transform., vol. 29, no. 2, pp. 1–8, 2015.[22] V. Svihla, “Advances in Design-Based Research in the Learning Sciences,” Front. Learn. Res., vol. 2, no. 4, pp. 35–45, 2014.[23] The Design-Based Research Collective, “Design-based research: An emerging paradigm for educational inquiry,” Educ. Res., vol. 32, no. 1, pp. 5–8, 2003.[24] J. R. Gomez and V. Svihla, “Building individual accountability through consensus,” Chem. Eng. Educ., vol. 53, no. 1, 2019.[25] J. R. Gomez, V. Svihla
Undergraduate Professor Award, ASEE Chemical Engineering Division Raymond W. Fahien Award, and the 2013 and 2017 ASEE Joseph J. Martin Awards for Best Conference Paper. Dr. Cooper’s research interests include effective teaching, conceptual and inductive learning, and integrating writing and speaking into the curriculum and professional ethics.Dr. Lisa G. Bullard, North Carolina State University Dr. Lisa Bullard is an Alumni Distinguished Undergraduate Professor and Director of Undergraduate Studies in the Department of Chemical and Biomolecular Engineering at North Carolina State University. She received her BS in Chemical Engineering from NC State and her Ph.D. in Chemical Engineering from Carnegie Mellon University. She
, she developed a passion for undergraduate education. This passion led her to pursue a career as a lecturer, where she could focus on training undergraduate chemical engineering students. She has been teaching at UK since 2015 and has taught Fluid Mechanics, Thermodynamics, Computational Tools and the Unit Operations Laboratory. She is especially interested in teaching scientific communication and integration of process safety into the chemical engineering curriculum.Prof. Samira Azarin Samira Azarin is an Assistant Professor of Chemical Engineering and Materials Science at the University of Minnesota. She earned her B.S. in chemical engineering from the Massachusetts Institute of Technol- ogy in 2006 and went
technical content, whereas dedicated courses offer an opportunity to focus deeply oncommunication content. Thus, it is extremely difficult to provide the same level of instruction,feedback, and opportunity for growth as communicators in an integrated course model comparedto a dedicated course. However, dedicated TC courses can at times lack technical realism andpragmatic training. A department’s choice to offer TC training through an integrated model maystem from several considerations, including insufficient resources or lack of flexibility in thecurriculum. While there are many reasons to believe a dedicated TC course is beneficial,discipline-specific comparison studies on this are lacking. Ultimately, our team seeks to evaluatethe potential
and mechanical engineering. Campbell University started the engineering program in 2016, and she is leading the design and imple- mentation of the chemical engineering curriculum at Campbell’s innovative, project based pedagogical approach. She has a PhD in chemical engineering from Washington State University, where she special- ized in miniaturizing industrial systems for applications in the undergraduate engineering classroom.Dr. Olusola Adesope, Washington State University Dr. Olusola O. Adesope is an Associate Professor of Educational Psychology and a Boeing Distinguished Professor of STEM Education at Washington State University, Pullman. His research is at the intersection of educational psychology, learning
Career Services & Employer Relations at Rose-Hulman Insti- tute of Technology. She received a B.A. in Spanish and M.S. in Community Counseling from Northern Kentucky University in 2007 and 2009, respectively. She is an award-winning curriculum designer with significant experience providing leadership and career development opportunities for college students. c American Society for Engineering Education, 2019 Work-in-Progress: Career Ready…or Not? A Career-Readiness Activity for Graduating Undergraduate Chemical EngineersIntroductionAccording to a recent poll, over 50% of student respondents think about their future career daily(Podany, 2019). Further
University of Applied Sciences in Groningen, where he taught both in Dutch and in English. During this time his primary teaching and course develop- ment responsibilities were wide-ranging, but included running the Unit Operations laboratory, introducing Aspen Plus software to the curriculum, and developing a course for a new M.S. program on Renewable Energy (EUREC). In conjunction with his teaching appointment, he supervised dozens of internships (a part of the curriculum at the Hanze), and a number of undergraduate research projects with the Energy Knowledge Center (EKC) as well as a master’s thesis. In 2016, Dr. Barankin returned to the US to teach at the Colorado School of Mines. His primary teaching and course
and resources that enable them to succeed. Thisincludes time and task management, assistance with planning an academic roadmap as well asinformation on co-curricular and extra-curricular activities that could develop one’s portfolio as achemical engineer, such as research, internships, co-ops, study abroad and (chemical)engineering clubs. Finally, the curriculum does not typically provide early information on thesteps necessary to prepare for one’s career. Failure to understand the answers to such questionscan result in students dropping the major, struggling academically, failing to make a connectionwith peers and resources, and facing challenges when applying for jobs due to inadequate careerpreparation.To address this gap in the curriculum
Workshop because I want to gain some insight into the field ofchemical engineering. Even though it is my major, I am not completely aware of what the job of a chemicalengineer entails. Also, I would love to gain design experience so that I may be more comfortable withworking in a design team and have some direction in the workshop setting.Final Remarks:The current work in progress looks for opportunities that can be offered to chemical engineeringstudents without the need to immediately changing the core curriculum. This is an excitingopportunity to share findings on the role that well-designed extracurricular experiences have onthe attitudes of chemical engineering students. Authors will be using the preliminary results toidentify trends (using
of the46 following four areas: academic and career advising, high school preparation, engineering structure and47 curriculum, and faculty relations[9]. This paper focuses on faculty relations because, historically, 148 universities have relegated retention issues to staff and advisors. The importance of faculty influence on49 student retention is an under-researched and under-explored area. Specifically, faculty relations can be50 shaped through specific teaching practices instructors can use to increase student retention. Research51 supports the claim that student-professor relationships are vital in promoting the success of engineering52 students [10], [11]. One
University of Applied Sciences in Groningen, where he taught both in Dutch and in English. During this time his primary teaching and course develop- ment responsibilities were wide-ranging, but included running the Unit Operations laboratory, introducing Aspen Plus software to the curriculum, and developing a course for a new M.S. program on Renewable Energy (EUREC). In conjunction with his teaching appointment, he supervised dozens of internships (a part of the curriculum at the Hanze), and a number of undergraduate research projects with the Energy Knowledge Center (EKC) as well as a master’s thesis. In 2016, Dr. Barankin returned to the US to teach at the Colorado School of Mines. His primary teaching and course
Paper ID #25300Board 14: Using Active Learning and Group Design Activities to IncreaseStudent Perceptions of a Course’s Educational ValueDr. Jason R White, University of California, Davis Dr. Jason R. White is a Lecturer with Potential for Security of Employment in the Department of Chemical Engineering at the University of California, Davis. He earned his Ph.D. and B.S. in Chemical Engineering from the University of Connecticut. In his current position, he has been working on integrating project- based learning into his courses and lowering barriers to success for transfer students. c American