Engineering (BME) from The Ohio State University (OSU), before joining the OSU BME Department as an Assistant Professor of Practice in 2014. Her roles include designing and teaching undergraduate BME laboratory courses, and mentoring multidisciplinary senior capstone teams on rehabilitation engineering and medical device design projects. She also leads K-12 engineering outreach events, and is pursuing scholarship in student technical communication skills and preparing BME students for careers in industry. c American Society for Engineering Education, 2019 Work in Progress:Biomedical Engineering Students’ Perspectives on a Laboratory Technical Writing
nano educational labs, as well as mentoring students in their senior capstone projects. His current projects include indus- try integration in the curriculum, undergraduate professional development, and entrepreneurial minded learning in the classroom.Amena Shermadou, Ohio State University Amena Shermadou is an Engineering Education graduate student at The Ohio State University. She received her Bachelors and Masters in Biomedical Engineering from Wright State University, in Day- ton, Ohio. Her experience with teaching first-year engineering students has led to research interests in curriculum development, student empowerment and the development of holistic engineers through the collaboration with engineering
knowledge inthe electromagnetic principles help students understand how the machines work. But in theworkforce, graduates will need to understand how to choose a given motor for a particularapplication. This means answering questions such as: Which type of motor is the most appropriate for the given application? At what speed(s) should be motor be operating? What torque is required for the application? What environmental issues need to be considered in selecting the motor?An initial foray into motor selection was briefly discussed as part of a larger discussion involvingworking with industrial partners [10]. In that project, a capstone design team of MechanicalEngineering Technology (MET) and Electrical
Search:Born out of the shortage of qualified engineers in the U.S. (and around the world), research onengineering education has increased over the past decade and were highlighted in key NationalReports1-2. And while prior studies have focused on why students go into engineering initially3,there has been recognition that selecting an engineering major has not always been based onsignificant understanding of the profession4. It was recognized that an engineering educationalapproach based on a capstone design project offered tangible understanding of the field to studentsbut not until it was too late to reasonably change their intended plan of study, a study by Marinand Associates assessed the most important elements including student preparation
, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The other is on the factors that promote persistence and success in retention of
500 individual calculus students on their course projects. He was given an Outstanding Advising Award by USF and has been the recipient of numerous teaching awards at the department, college, university (Jerome Krivanek Distinguished Teaching Award) and state (TIP award) levels. Scott is also a co-PI of a Helios-funded Middle School Residency Program for Science and Math (for which he teaches the capstone course) and is on the leadership committee for an NSF IUSE grant to transform STEM Education at USF. His research is in the areas of solution thermodynamics and environmental monitoring and modeling.Dr. Venkat R. Bhethanabotla, University of South Florida Venkat Bhethanabotla obtained his BS from Osmania
potential for replication. The most important features ofthe course are integration of previous materials from existing courses and incorporation of newknowledge regarding the system approach to design. It will also prepare students for a finalsenior capstone project in the fluid power field.ConclusionsThis paper presents the definition of technical topics, and development of lecture/lab materialsthat are needed for a modularized upper-level undergraduate course potentially titled “Design ofFluid Power Systems”, which offers to students the opportunity to expand their knowledge andskills of the fluid power field in a practical and hands-on setting. The proposed course requiresbasic knowledge of fluid mechanics and instrumentation, therefore, it can
Engineering Education at Virginia Tech with Affiliate Faculty status in Biomedical Engineering and Mechanics and the Learning Sciences and Technologies at Virginia Tech. He holds degrees in Engineering Mechanics (BS, MS) and in Educational Psychology (MAEd, PhD).Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design
knowledge and skills leading to advanced careers in management, supervisory, and otherprofessional positions.The PMT program was introduced at Kansas State University Polytechnic Campus (KSP) in 2012. Itoffers common core courses in professional skills such as leadership, project management,communication and teamwork in professional settings; and tracks in areas of emphasis such as Aviation,Engineering, Technology Management, and other disciplinary areas; and a capstone experience.One of the five core courses of the Professional Master of Technology (PMT) program at KSP isInformatics and Technology Management (COT 706). Through a modular format, the course aims toprovide tools in areas of statistics, research methods and data mining. The course
Fulton Teachers College at Arizona State University. He also serves as an Extension Services Consultant for the National Center for Women and Information Technology (NCWIT). His past experiences include having been a middle school science teacher, Director of Academic and Instructional Support for the Arizona Department of Education, a research scientist for the Center for Research on Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His first research strand concentrates on the relationship between educational policy and STEM education. His second research strand focuses on studying STEM classroom interactions and subsequent effects on student
NeedsAbstractAs institutions of higher education strive to maintain effective and affordable educationalpathways, innovative partnerships between associate and baccalaureate degree grantinginstitutions can facilitate a student’s progress while maintaining close alignment with industryneeds. This paper details the continuing efforts of a multi-year project between a two-yearcollege, a university and industry that has resulted in the creation of well-aligned associate andbaccalaureate degrees in mechanical engineering technology. These offerings represent newdegrees for both institutions, as well as an entirely new department of engineering technology forthe university that complements its already existing engineering programs. Both degrees arebased on a
), 3) choosing a mentor, 4) choosing a potential employer, 5) developing critical skills listed in company job postings, 6) planning for a career fair, 7) writing a 1-3 minute career fair plea/pitch for potential employers, 8) preparing for paid internships, 9) preparing for a full time job, 10) preparing for interviews, 11) preparing for a paid project (e.g. University Undergraduate Research Initiative (UURI), Western Alliance to Expand Student Opportunities (WAESO); see [33] summarizing 14 such projects), 12) preparing for a senior design capstone project, 13) preparing for an honor’s thesis, 14) preparing for graduate school, 15) preparing a statement of purpose, 16) preparing for graduate work (e.g. thesis), 17) preparing for
IIE, a fellow of ASME, a former Fulbright scholar and NRC Faculty Fellow. Her recent research focus includes sustainable product design and enhancing creativity in engineering design settings.Prof. Zahed Siddique, University of Oklahoma Zahed Siddique is a Professor of Mechanical Engineering at the School of Aerospace and Mechanical Engineering of University of Oklahoma. His research interest include product family design, advanced material and engineering education. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and
1writing process, reflections were assigned at the beginning and end of the courses and after everyassignment to provide opportunities to connect and apply learning across assignments andclasses.Following the junior lab courses, these students will enter the one-year senior capstone sequence,with Harold as lead instructor and Jenn continuing to work with them on writing through morehands-on methods such as writing workshops and direct feedback. The seniors spend the yearworking on projects for external sponsors, and the writing is intended for such audiences.Reflections have also been used in the senior year to continue building on their writingknowledge and to prepare them for writing beyond the university.Literature ReviewReflection has long
the STEM workforce.Next, we will briefly outline the future success stories of the high school, undergraduate, andgraduate scholars who participated in this program. These success stories show the potential forthese programs to generate new streams of students and researchers for universities, which caneventually grow and diversify the STEM workforce.• Two patent applications. Two journal publications• One Barry Goldwater Recipient, Two Barry Goldwater Honorable Mentions• One DoD SMART Scholarship Recipient• One National Science Foundation Graduate Research Fellow• Eighteen students continued these projects in Senior Capstone.• Seven Honors Theses at the University of Mississippi.• Two successful grants with NASA and C Spire
, where he is serving as a research assistant under an NSF-funded ITEST project.Dr. Sheila Borges Rajguru, NYU Tandon School of Engineering Dr. Sheila Borges Rajguru is the Assistant Director of the Center for K-12 STEM Education, NYU Tandon School of Engineering. As the Center’s STEAM educator and researcher she works with engi- neers and faculty to provide professional development to K-12 STEM teachers with a focus on social justice. She is currently Co-Principal Investigator on two NSF-grants (senior personnel of one) that pro- vide robotics/mechatronics PD to science, math, and technology teachers. In addition, she is the projects director of the ARISE program. This full-time, seven-week program includes: college
transfer of learning from school into professional practice as well as exploring students’ conceptions of diversity and its importance within engineering fields.Dr. Marie C. Paretti, Virginia Tech Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering
of Engineering at Peking University, College of Engineering and Science atHuazhong University of Science and Technology, College of Modern Engineering andApplied Science at Nanjing University and so on. These engineering schools providemulti-faceted and multi-channeled funds for undergraduate engineering students totake international project internships, short-term international exchange programs, andfinish their capstone design projects overseas. Moreover, a number of engineeringschools in China adopt a “3+2” or “3+1+1” [12] dual-degree/joint degree collaborativeeducation to cultivate engineering talents by cooperating with overseas universities,providing opportunities for engineering students to study at home and then abroadduring their
capstone senior design course at UD.Working on a design team that has two members from Shanghai, for example, is different fromany other planned international program. It challenges students in many of the same ways thatthey will be challenged upon entering today’s workforce. Perhaps one the best aspects of this isthat it is not an activity that is presented as “now we’re going to do something international.”Instead, it is simply the reality that to be successful on a technical project, and earn the desiredgrade, they will have to navigate working on a team that is international.Basic Description of ArrangementThe University of Dayton and Shanghai Normal University are partners in a unique articulationagreement for the Bachelor of Science in
design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she works closely with the departmental leadership to manage the undergraduate program including: developing course offering plan, chairing the undergrad- uate curriculum committee, reviewing and approving course articulations for study abroad, serving as Chief Advisor, and representing the department at the college level meetings. She is also engaged with college recruiting and outreach; she coordinates three summer experiences for high school students visit- ing Bioengineering and co-coordinates a weeklong Bioengineering summer camp. She has worked with the
Paper ID #26269Developing Reliable Lab Rubrics Using Only Two ColumnsProf. Joshua A. Enszer, University of Delaware Dr. Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional development
. studentswere given assignments that required them to use a makerspace to complete), from introductorycourses that open to non-engineering students to capstone design courses for senior engineeringmajors. The number of courses for which the space was utilized by students was expected toincrease in the next academic year.Data CollectionWe have designed our project using both instrumental and collective case study frameworks[31]. We are currently in our instrumental case study phase, detailing the particulars of eachuniversity program. Following the completion of our instrumental work we will engage in acollective case study framework to determine similarities and differences across programs toform a comprehensive perspective of makerspaces embedded
for 5 of the 7 engineering majors at UT. 9Summer: Team Building Project A major focus of the TranSCEnD experience is a summer program where studentsvoluntarily participate in a multidisciplinary capstone group project. The high impactcapstone project will incorporate aspects of materials science and civil, environmental,mechanical, and electrical engineering to build a solar thermal heating system or both an offgrid/grid-tied solar electric system; the projects will alternate every other year. The projectswill supplement the summer lecture coursework with a hands-on experience that will give thestudents opportunity to cement a series of
learning in a senior/graduate mechatronics course. In [19], theauthors showed how virtual software and hardware environment can provide enhanced learningopportunities for mechatronics engineering technology majors. The project-based approach ofteaching mechatronics was presented in [20]. Development of a senior mechatronics course formechanical engineering students was described in [21]. In [22], the authors presented thedevelopment of an introductory mechatronics course for the students who had completed theirsecond year at the community college and planned on pursuing a bachelor’s degree in anengineering field. In [23], the authors investigated the use of agile methods enhancingmechatronics education through the experiences from a capstone
Academic Affairs, Southeast Universityincharge of ad- ministration of the university’s teaching research projects for undergraduate programs, also undertook the national social science fund project, published a number of teaching reform papers in the core journals. c American Society for Engineering Education, 2019 Field Programs to Accomplish the Learning Objectives for Engineering Courses: A case study of Road Surveying and Design Course at Southeast University, ChinaAbstractBackground: China Engineering Education Accreditation Association (CEEAA)emphasizes advancing the learning objective requirements of the Chinese studentsmajoring in engineering disciplines to the
engineering disciplines at PurdueUniversity, EPICS courses will satisfy at least a technical elective (some require students to havethird or fourth year standing) and capstone for four disciplines. The curricular structure allowsstudents to participate over multiple semesters or even years which supports long-term,reciprocal community partnerships. The long-term student participation allows for projectdevelopment over multiple semesters or years and allows projects in EPICS to address complexand compelling needs in the local or global community.EPICS teams, or course sections, consist of 8-25 students and are student led with a faculty orindustry mentor, called an advisor. Graduate student teaching assistants support the advisors andeach one supports
, he supports over 230 cadets in the ABET accredited systems engineering major. Systems Engineering is currently the largest engineering major at USAFA, administered by seven departments with cadets participating in over 30 engineering capstones projects. Trae received his undergraduate degree in Systems Engineering in 2012 from USAFA with a focus in Electrical Engineering. He is a distinguished graduate from the Air Force Institute of Technology receiving a Master of Science in Systems Engineering in 2018. Trae serves in the USAF as a developmental engineer and holds Department of Defense certifications in systems engineer- ing, science and technology management, test & evaluation, and program management. He
also acquired and practiced in other contexts, such as seniordesign or capstone projects, the selected approach of focusing on only laboratory or statisticscourses was considered suitable first step for the initial pilot stage.Catalog descriptions were coded for cognitive level of data analysis content based on Bloom’staxonomy [6], with demonstration of understanding coded as 1, application coded as 2, andanalysis coded as 3. Note that no higher levels of Bloom’s taxonomy were identified in anycourse description. Therefore, these three levels were used to assign a quantitative rank to eachcourse. For example, a Statistical Topics in Electrical Engineering course with the description,“This course examines the use of probability and statistical
Paper ID #27231A Review of Ethics Cases: Gaps in the Engineering CurriculumDr. Chris Swan, Tufts University Chris Swan is Dean of Undergraduate Education for the School of Engineering and an associate professor in the Civil and Environmental Engineering department at Tufts University. He has additional appoint- ments in the Jonathan M. Tisch College of Civic Life and the Center for Engineering Education and Outreach at Tufts. His current engineering education research interests focus on community engagement, service-based projects and examining whether an entrepreneurial mindset can be used to further engi- neering