department.INTRODUCTIONUndergraduate students can gain various benefits by conducting research to foster relationshipswith faculty members, discover their interests, and explore and prepare for future academic orprofessional pursuits. Throughout the research process, they can enhance critical and analyticalthinking skills, learn how to collaborate and work effectively as part of a team, and developproblem solving and communication skills. The importance and effectiveness of undergraduateresearch have been highlighted in past studies. Kuh (2008) mentioned that engaging inundergraduate research is identified as a High Impact Practice (HIP), as experience that increasestudent retention and success, and many research studies show that even early engagement inresearch is
noted from surveys conducted by the ASCE BOK EducationalFulfillment Committee (BOKEdFC) [7].High-Impact Learning Practices (HILP) have received the attention of higher educationinstitutions due to a developing case of benefits in student engagement, success, and persistence.In 2007, the Association of American Colleges and Universities (AAC&U) published theCollege Learning for a New Global Century report and found several promising “high-impact”activities including first-year seminars, common intellectual experiences, learning communities,service learning, undergraduate research, study abroad, internships, and capstone projects,among others. This report recommends that institutions prioritize HILPs to enhance studentengagement and increase
, the effectiveness ofsuch projects within the context of competition is largely unexplored.Surveys of recent graduates will serve as the primary assessment tool for the effectiveness ofinterdisciplinary versus non-interdisciplinary teams and competition versus non-competitionteams. The authors will assess both the impact of student competitions on learning and theimpact of interdisciplinary teams on the learning and effectiveness of competition teams.Additional assessment tools will include competition scores and feedback received from facultymembers based on the performance of the 2020 West Point Steel Bridge Team.IntroductionIt only takes a quick look at the news over the past few years to see that the world is changing ata rapid pace
Paper ID #29322Coordinating Field Trips for Design CoursesProf. Scott A Civjan P.E., University of Massachusetts, Amherst Scott Civjan is a faculty member at UMass Amherst where he has taught a wide variety of undergraduate and graduate courses over the past 20+ years. He has 4 years of consulting experience between obtaining his BSCE from Washington University in St. Louis and his MS and PhD in Structural Engineering from the University of Texas Austin. c American Society for Engineering Education, 2020 Coordinating Field Trips for Design CoursesAbstractAn instructor’s experience
Clemson University. She has over ten years of construction and civil engineering experience working for energy companies and as a project management consultant. Dr. Simmons has extensive experience leading and conducting multi-institutional, workforce-related re- search and outreach. She is a leader in research investigating the competencies professionals need to compete in and sustain the construction workforce. Dr. Simmons oversees the Simmons Research Lab (www.denisersimmons.com), which is home to a dynamic, interdisciplinary mix of graduate researchers and postdoctoral researchers who work together to explore human, technology and society interactions to transform civil engineering education and practice with an
approach to introduce a simplified yet realistic setof mini-projects across two back-to-back semester structural courses. Here, these mini-projectswere developed based on best-practice design papers and rules of thumb for design in eachmaterial, including procedures used to teach architecture students structures. To limit complexityand align with the course topics, gravity bays were the focus of the mini-projects whileimplementing a real campus building. Through teams of two students, these mini-projects havestudents cycle through conceptual layouts and sizing of gravity systems in both steel and concrete,then at the end of the year, they try to evaluate which systems are most applicable. Results to datehave shown that this approach does fill in
and this isthe main source they look to for information, and they also recognize the importance of using otherinformation as references in the development of an engineering design rather than creating a designin isolation. It is interesting to note, however, that resources such as design guides, standards, andother resources that a practicing engineer may look to for design guidance were not mentioned ordiscussed. This may point to an opportunity to increase students’ awareness of such resources,where to find them, and how they can be used. Theme 4. Students indicate that they would need anywhere from about an hour to over a year to solve the problem and would use this time to research, brainstorm ideas, and build and test a prototype
graduation and are designed to meet the Accreditation Board for Engineering andTechnology (ABET) requirement of a culminating major engineering design experience (ABET,2019). Capstone design courses are also considered an “high impact” instructional practice(AACU, 2008).There are many characteristics of a capstone design class that can vary substantially frominstitution to institution including team characteristics (i.e. size, organization, multidisciplinary),length of the course (one semester or multiple semesters), type of projects, and integration withindustry partners. While there are many student level surveys of senior capstone experiences (G.Padmanabhan, 2018; Saleh, 2011; Brouwer, et. al, 2011; Aidoo et. al, 2013; Nelson et. al, 2014;Shah et
. She previously served as the Associate Director of the Center for Assessment and Research Studies at JMU. Her areas of research include assessment practice and engineering education research. c American Society for Engineering Education, 2020 Scaffolding and Assessing Sustainable Design Skills in a Civil Engineering Capstone Design CourseAbstractAs educators seek to incorporate sustainability into engineering courses, appropriate assessmenttools are needed to capture the impacts on student development. In particular, methods forassessing student sustainable design skills are lacking in the literature. As a result, we have beenengaged in a multi-stage process to develop and
focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering fos- ter or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. Her research earned her a National Science Foundation CAREER Award focused on characterizing latent diversity, which includes diverse attitudes, mindsets, and approaches to learning, to understand engineering stu- dents’ identity development. She has won several awards for her research including the 2016 American Society of Engineering Education
balance principles by incorporating a deliberate systematicapproach. Indeed, for our students to tackle the grand challenges of this century, they must beable to understand the inherent interconnectedness of global and regional environmental systems.Introduction The environmental engineering discipline employs fundamentals of mass balance alongwith engineering design principles to develop solutions for environmental challenges. A numberof these challenges are specifically addressed as grand challenges of the 21st century such asensuring a sustainable supply of food, water, and energy to underdeveloped areas, curbingclimate change while simultaneously adapting to its impacts, eliminating waste and waste-creating practices, and creating
American Society for Engineering Education, 2020Peer Mentorship and a 3D Printed Design-Build-Test Project: Enhancing the First Year Civil Engineering ExperienceAbstractThe purpose of this paper is to report the impact of a redesigned first-year civil engineeringcourse on student confidence, sense of belonging, and retention. This paper provides an overviewof the course and a peer mentored design project, the student-peer mentoring team structure, andsummarizes the qualitative and quantitative feedback with statistical analysis.Content delivery was changed (traditional to flipped classroom), and 3D CAD/simulation and 3Dprinting, MATLAB, and peer mentorship were also integrated. The new course was designed tointroduce students to i
domestic levels, results from or intersects with environmental technologies. MAJ Mower teaches EV350 and EV450, required courses for cadets in the environmental engineering sequence.Major Erick Martinez P.E., U.S. Military Academy Erick Martinez is a Major in the United States Army and an Assistant Professor in the Department of Chemistry & Life Science at the United States Military Academy. He is a 2007 graduate of the United States Military Academy with a B.S. in Environmental Engineering and a 2016 graduate of the Univer- sity of Florida with an M.E. in Environmental Engineering. He is a registered Professional Engineer (P.E.) in the State of Florida and teaches General Chemistry, Environmental Engineering for
and Environmental Policy, and En- gineering Risk and Uncertainty. Her recent research is about gaseous emissions of reactive nitrogen from fertilized fields into the atmosphere and impacts on air quality and climate change, and implementing process and project learning in introductory fundamentals classes. c American Society for Engineering Education, 2020 Preliminary results from implementing a data driven team project in introductory risk and uncertainty analysis class for sophomore civil and environmental engineering students1. INTRODUCTIONRapid changes in science and technology mandate that engineering education is updated to keepup pace with these changes. Computing
construction safety, and in particular Prevention through Design. Upon graduation, he worked for four years as an Assistant Professor at UNC-Charlotte. He is currently an Assistant Professor in the Department of Civil & Environmental Engineering at Bucknell University (Lewisburg, PA, USA).Dr. Elif Miskioglu, Bucknell University Dr. Elif Miskio˘glu is an early-career engineering education scholar and educator. She holds a B.S. in Chemical Engineering (with Genetics minor) from Iowa State University, and an M.S. and Ph.D. in Chemical Engineering from Ohio State University. Her early Ph.D. work focused on the development of bacterial biosensors capable of screening pesticides for specifically targeting the malaria vector
preparation required to prepare video contentand the challenges associated with implementation. In general, this study was designed toevaluate the impacts of increased active learning in the classroom, measure differences in studentperformance between the control and treatment groups, determine the potential for treatmentstudents to exhibit increased levels of learning from the PFC format, evaluate student perceptionsof the new model, and identify and overcome challenges associated with implementing a PFCmodel. While the full details of this research design are provided in a previous paper [41], thispaper will focus on select highlights of the quantitative and qualitative results. With the exception of the flipped lectures that were created
educate the future of our Service andhave developed a Coastal Resiliency course that provides exposure into the science of climatechange, its impact on civil engineering infrastructure and on the planning and design of resilientstructures. The Coastal Resiliency course provides preparation for the real-world practice ofengineering by exposing students to the importance of risk and vulnerability assessment withinthe context of changing climatic conditions. As a sea-going service, the majority of the USCG’sassets are along the coastline. As the USCG’s primary accession point for civil engineers,ensuring future engineers are exposed to the potential challenges that will likely occur due torising sea level and other climate-related hazards is an
his experiences as a consulting engineer into courses covering the practice of civil en- gineering, including a senior level capstone course which runs in parallel with a currently ongoing civil engineering project. His doctoral research was conducted on the long-term field performance of retaining structures in expansive clay.Mr. Hugh Watson Morris, University of Auckland, NZ Hugh Morris is a Senior Lecturer in Civil Engineering who had a short period in local government and consulting before joining the University 30 years ago. He has taught timber engineering design to struc- tural engineering students and introductory design to 1000 first year students from multiple engineering disciplines. He has a passion for
manager of Materials Testing lab at Missouri S&T, teaches mechanics of materials and develops digital educational resources for the engineering students. He had the opportunity of leading several scientific and industrial research projects and mentoring graduate and undergraduate students. Over the span of his career, Dr. Libre authored and co-authored 3 chapter books, 17 peer-reviewed journal articles and over 60 conference papers. He has advised and co-advised 8 gradu- ate students and mentored over 30 undergraduate students. He has collaborated with scholars from several countries, including Iran, China, Slovenia, Canada, and the US. He also served as a reviewer for 6 journals and a committee member of 5
of the practice of professionalengineering (where a PE license is required), but they all generally conform to the definitionincluded in the National Council of Examiners for Engineering and Surveying (NCEES) ModelLaw (4) as follows: “The term “Practice of Engineering”, as used in this Act, shall mean anyservice or creative work requiring engineering education, training and experience in theapplication of engineering principles and the interpretation of engineering data to engineeringactivities that potentially impact the health, safety, and welfare of the public. The services mayinclude, but are not limited to, providing planning, studies, design, design coordination,drawings, specifications, and other technical submissions…”As the world
Survey," Prepared for: Calaveras County Water District and Stockton East Water District, Prepared by: Water Quality & Treatment Solutions, Inc. and Karen E. Johnson Water Resources Planning, 2016. CIVL 151 – Heavy Construction Methods, Fall 2019 Questionnaire, Pre‐activity I am working on a project to educate civil engineering students about relevant and developing technologies. This questionnaire is intended to collect information on how best to teach civil engineering students about technology. Participation in this questionnaire is voluntary and will not impact your grade in any way. If you choose to participate, please do not put your name on this paper. If you
Civil EngineeringDr. Jennifer Harper Ogle, Clemson University Dr. Jennifer Ogle is a Professor in the Glenn Department of Civil Engineering at Clemson University, and a 2005 graduate of the Department of Civil and Environmental Engineering at Georgia Tech. Her research portfolio focuses on transportation infrastructure design, safety, accessibility, and management. She is currently the facilitator for the NSF Revolutionizing Engineering and Computer Science Depart- ments (RED) grant at Clemson, and is leading three transformation efforts related to culture, curriculum, and community to achieve adaptability, innovation, and shared vision. Alongside her research, Dr. Ogle has been active in the development of engaged
four years of premedical education in a college or university; • Earn a medical degree (MD, DO or other credential approved by an ABMS Member Board) from a qualified medical school; • Complete three to five years of full-time experience in a residency training program accredited by the Accreditation Council for Graduate Medical Education (ACGME); • Provide letters of attestation from their program director and/or faculty; • Obtain an unrestricted medical license to practice medicine in the United States or Canada; and • Pass a written and, in some cases, an oral examination created and administered by an ABMS Member Board.* We emphasize this point, because in the ongoing ASCE discussion of
operations was developed. In orderto assess the impact of the inquiry-based learning module, a short post-survey was used. Thefeedback indicated that the students were satisfied with the way the class was taught and that themethod of instruction kept them engaged and focused. This method will be developed furtherover the next few offerings of the course, and tests on how well this method can be used for othertopics in transportation engineering courses will be conducted.IntroductionHighway and traffic engineers study topics related to roads, including their design and operation.Most Civil Engineering undergraduate curriculum includes an introduction to transportationengineering course that covers the fundamentals of design and operation of
professionalism, ethics, and trust/ trustworthiness in professional-client relationships. A licensed engineer with over 35 years experience in engineering education and practice, Dr. Lawson has provided project management and technical oversight for geotechnical, construction ma- terials, transportation, environmental, and facilities projects nationwide.Theodore G. Cleveland, Texas Tech University Dr. Cleveland combines laboratory and field methods with information management, experimental design, and computational modeling. He is an experimental researcher, modeler, and teacher. His technical background includes environmental and civil engineering, and his research work is focused on water resources problems encompassed in
facility neighbors). In courses withauthentic design projects, particularly those that use a human-centered design paradigm, multipleopportunities for authentic listening practice are available.Ultimately, like many professional skills, listening is perhaps best taught in a cohesive approachthat is integrated through the curriculum. A single mention of listening in one course isinsufficient. When programs are integrating communication skills, teamwork/leadership, andethics/societal impacts as required learning outcomes for ABET, listening can be explicitlyidentified to students as sub-elements among these outcomes. For example, students couldpractice their listening skills in association with oral presentations by their peers. Traditionalstudent
engineeringprograms do not explicitly address it throughout their curricula. For instance, there are manycompetitions, challenges and opportunities for the demonstration of design skills, but most areoptional or extracurricular, catching only a portion of engineering graduates in a somewhat adhoc manner and at variable or even random places and times. As Walesh states, "Yes, we couldindividually and collectively rely on accidental creativity and innovation, those wonderful butrare out-of-the-blue events. However, why not complement accidental creativity and innovationwith the intentional kind?"11(pxviii) Making development of creativity skills a deliberate part ofengineering curricula is vital. If we do not integrate the development of these important skills