identity and belonging. This qualitative analysis will be reported in future publications.The URES tool developed in this study represents a preliminary effort to collect and analyzeperceptions of undergraduate research experiences across all class years. Items were drawnfrom constructs associated with assessment of research training programs that overlappedwith constructs of engineering identity. Responses suggest that students build their definitionsof engineering based primarily on didactic training and do not necessarily view high-impactextracurricular research experiences as part of what it means to be an engineer. Future workwill examine the overlap among measures of engineering identity and research skills and willmap the qualitative
engineering and the profession. Throughmakerspace activities and the perception of feeling included and developing a sense ofbelonging, students can determine if they are perceived as being part of the engineeringcommunity [12] and therefore, are or can be perceived as being professional engineers. Wemaintain that students who do not feel they belong or included in makerspaces may also feel theyare not perceived to be future engineers, influencing their identity as being members of theprofession and the community of engineers. Thus, gender, ethnicity, and culture may beassociated with feeling of belonging in makerspaces, and an indicator of students’ feeling ofbelonging in engineering and developing and engineering identity. Given students are likely
Institute at UGA is an innovative approach that fuses high quality engineering education research with systematic educational innovation to transform the educational practices and cultures of engineering. Dr. Walther’s research group, the Collaborative Lounge for Understanding Society and Technology through Educational Research (CLUSTER), is a dynamic in- terdisciplinary team that brings together professors, graduate, and undergraduate students from engineer- ing, art, educational psychology, and social work in the context of fundamental educational research. Dr. Walther’s research program spans interpretive research methodologies in engineering education, the pro- fessional formation of engineers, the role of empathy
South Korea. She currently works as graduate research assistant in engineering education department. Her research interests are assessment for learners in diverse settings, and teacher education in multicultural settings.Prof. Jeffrey F Rhoads, Purdue University at West Lafayette Jeffrey F. Rhoads is a Professor in the School of Mechanical Engineering at Purdue University and is affiliated with both the Birck Nanotechnology Center and Ray W. Herrick Laboratories at the same insti- tution. He received his B.S., M.S., and Ph.D. degrees, each in mechanical engineering, from Michigan State University in 2002, 2004, and 2007, respectively. Dr. Rhoads’ current research interests include the predictive design, analysis, and
: A review of the literature AbstractGraduates from aviation and aerospace technical and engineering disciplines emerge withcertifications and academic coursework to fulfill the respective degree requirements, but maystill lack fluency in key non-technical competencies to fully leverage their professionalcredentials and academic preparation. Due to the applied nature of the aviation and aerospacedisciplines, problem-based learning approaches implicitly seek to incorporate and develop suchskills as part of the educational experience. Individual resilience is one example of a non-technical competency sought by employers across high consequence, technology-basedindustries. However, a stronger shift from
Glenn Department of Civil Engineering at Clemson University, and a 2005 graduate of the Department of Civil and Environmental Engineering at Georgia Tech. Her research portfolio focuses on transportation infrastructure design, safety, accessibility, and management. She is currently the facilitator for the NSF Revolutionizing Engineering and Computer Science Depart- ments (RED) grant at Clemson, and is leading three transformation efforts related to culture, curriculum, and community to achieve adaptability, innovation, and shared vision. Alongside her research, Dr. Ogle has been active in the development of engaged learning and has led two interdisciplinary undergraduate translational research and education courses
. Policymaking to Create Scientists and Engineers from Sputnik to the ’War Against Terrorism’ (University Press of America, 2005), Engineering and Sustainable Community Development (Morgan &Claypool, 2010), Engineering Education for Social Justice: Critical Explorations and Opportunities (Springer, 2013), and Engineering Justice (with Jon Leydens, Wiley, 2018) ©American Society for Engineering Education, 2020 The Influence of Connecting Funds of Knowledge to Beliefs about Performance, Classroom Belonging, and Graduation Certainty for First- Generation College StudentsAbstractFirst-generation college students in engineering accumulate bodies of knowledge through theirworking
Paper ID #29471The New Engineering Education in Chinabased on 207 new engineeringresearch and practice projectsDr. Jinlu Shen, Zhejiang University College of Public Affairs, Zhejiang UniversityDr. Tuoyu Li, Zhejiang University Li Tuo-yu, Research Assistant Institute of China’s Science, Technology and Education Policy, Zhejiang University College of Public Affairs, Zhejiang University Research Center on Science and Education Development Strategy, Zhejiang University AddressRoom 1205-3, Administration Building, Zijingang Campus, Hangzhou, Zhejiang Province; 310058 P.R. China American
-efficacy beliefs and outcome expectations [1].The belonging component includes a set of activities to develop professional identity and senseof belonging. Activities such as establishing learning communities through project-orientedengineering teams, aim at developing freshmen and sophomores’ interactions with seniorstudents via capstone and design-oriented courses. These interactions are structured around twoone-credit courses, Introduction to Engineering (INGE-3001) and Introduction to LearningCommunities (INGE-3002).In the formative component, interventions in the form of talks and soft-skill workshops are aimedat training students using well-known high-impact educational practices [21]. Trainings basedon the Affinity Research Group (ARG) model
that discipline,[3] and that suchparticipation results in the development of a variety of skills related to communication,[4]leadership and ethical development,[5] and design and teamwork.[6] Such increases also havevarious professional benefits. For example, students who participate in these activities get jobsafter graduation at higher rates than those who do not.[7]But the engineering curriculum is very dense, making participation in out-of-classroom and co-curricular activities challenging. Brint and co-workers [8] found that there are two separateacademic cultures of engagement, where the arts, humanities, and social sciences focus on the“interaction, participation, and interest in ideas,” and science and engineering disciplines focuson
Paper ID #29189”Adversary or Ally”: Undergraduate Engineering Students’ Perceptions ofFacultyMr. H. Ronald Clements III, Purdue University H. Ronald Clements is a postbaccalaureate research assistant in the STRIDE lab at Purdue University and an incumbent graduate student for Purdue’s Engineering Education department for the 2020-2021 year. He works with Dr. Allison Godwin on her NSF CAREER grant titled ”Actualizing Latent Diver- sity: Building Innovation through Engineering Students’ Identity Development,” assisting with narrative analysis and interviews and helping to understand the identity trajectories of latently
different thanpresented in class. This exercise is termed a “napkin sketch” to articulate to students the benefitsof simple sketches to communicate ideas – as is often done by engineers in practice. The purposeof the study was to investigate how this napkin sketch activity addresses three concerns ofengineering educators: creativity, visualization and communication, and knowledge retention.Specific objectives of the study were to generate conclusions regarding the activity’s ability to(1) provide an outlet for, and a means of encouraging creativity, (2) provide an opportunity forstudents to visualize and communicate what they have learned through drawings rather thanequations or writing, and (3) encourage knowledge retention by providing a
interested in improving the culture and environment of undergraduate education experience for all students, particularly those from underrepresented groups.Dr. Patricia Clayton, University of Texas at AustinDr. Maura Borrego, University of Texas at Austin Maura Borrego is Director of the Center for Engineering Education and Professor of Mechanical Engi- neering and STEM Education at the University of Texas at Austin. Dr. Borrego previously served as Deputy Editor for Journal of Engineering Education, a Program Director at the National Science Foun- dation, on the board of the American Society for Engineering Education, and as an associate dean and director of interdisciplinary graduate programs. Her research awards