Paper ID #30680Engendering Community to Computer Science Freshmen through an EarlyArrival ProgramProf. Alark Joshi, University of San Francisco Alark Joshi is an Associate Professor in the Department of Computer Science at the University of San Francisco. He was a co-PI on the IDoCode project (http://coen.boisestate.edu/cs/idocode/) that led to a change in the landscape of computer science teacher preparation and education in the state of Idaho. Currently, he is a co-PI on the S-STEM proposal focused on engaging students in the local community to enable successful outcomes for them with respect to courses and internships/jobs
as an Assistant Professor.Dr. Anidza Valent´ın-Rodr´ıguez, University of Puerto Rico, Mayaguez Campus c American Society for Engineering Education, 2020 Success Expectations of Low-Income Academically Talented Students in Engineering - A Preliminary Study at a Hispanic- Serving InstitutionIntroductionThis paper describes findings on interviews conducted with Hispanic engineering studentsinterested in participating in an S-STEM fellowship program at the University of Puerto Rico,Mayagüez Campus (UPRM). The program seeks to increase the retention, persistence, andsuccess of Low-Income Academically Talented Students (LIATS) at the College of Engineering(CoE). The
Research and Education c American Society for Engineering Education, 2020 Implementation of an Introductory Engineering Course and its Impact on Students’ Academic Success and RetentionAbstractThis Complete Research paper will describe the implementation of an introductory course(ENGR194) for first semester engineering students. The course is meant to improve retention andacademic success of engineering first-year students in the College of Engineering at the Universityof Illinois at Chicago. The implementation of this course is part of an ongoing National ScienceFoundation (NSF) Scholarships in Science, Technology, Engineering, and Math (S-STEM)project. This paper reports on the impact of combinatorial
a STEM researchproject. National Science Foundation Middle/High School Student Attitudes Towards STEM (S-STEM) Survey [8] was used to assess the overall impact of the outreach program on the femalestudents’ self-confidence and motivation in pursuing future cross-disciplinary STEM careers.The results showed that the 21st Century skills related to critical-thinking, communication, andcollaboration was the section with the most radical improvement.Keywords: kinematics of mechanisms, protein kinematics, biomechanics, biochemistry, DNAnano-mechanismsIDEAL Online Summer Outreach Program Curriculum Plan and MethodsDuring the summer of 2019, mechanical engineering faculty and two undergraduate studentsfrom both NSM and ECS colleges offered a two
months, we collected data using aseries of survey tools including two Upper Elementary School and Middle/High School StudentAttitudes toward STEM (S-STEM) Surveys (Technology and Engineering and 21st CenturySkills) [8] and the Alternative Uses Test (AUT) [9][10]. Additionally, we conducted interviewswith representative youth about their perceptions and attitudes towards the surveys.While the AUT results showed a positive change in the youth, initial results from pre-postSTEM-S evaluations showed insignificant and sometimes negative shifts in youth's intereststowards Technology and Engineering, and 21st Century Skills. Interviews showed that youthstruggled to accurately assess changes in themselves due to the time lapse between pre-postprogram
activities. The DET survey is a five-point Likert-scale that consists of 40 items.The instrument focused on measuring the participants’ perceptions and familiarity with the DETconcepts. A S-STEM survey was also administrated to the teachers’ students at the beginning andthe end of the school year. The S_STEM survey is a five-point Likert-scale with 37 items. TheS_STEM survey captured the students’ attitudes towards the STEM fields and the 21st-centuryskills. In the paper we will describe the research conducted and discuss the implications forcultivating STEM literacy and integrated STEM education. Both pre- and post-comparison resultsand correlation results are presented.IntroductionSTEM fields play a crucial role in generating technological
[8] as well as courses utilizing active learning rather than a lecture-based approach have beenshown to predict GPA among engineering students [9]. In a further effort to close this divide, a multidisciplinary Scholarships for Science,Technology, Engineering, and Mathematics (S-STEM) National Science Foundation (NSF)program was undertaken to recruit, retain, and develop leadership skills in underrepresentedstudents majoring in electrical, computer, and software engineering (ECSE) at a largeMidwestern university (computer science majors were not housed in this department). It washypothesized that the program would result in higher academic performance among programparticipants than in their non-participating peers, as indicated by their
Paper ID #29030WIP: Mitigating Transfer Shock for Undergraduates in Engineering toIncrease DiversityMrs. Claire Duggan, Northeastern University Claire Duggan is the Director of The Center for STEM Education at Northeastern University. While serving in this role she has supported the design and implementation of multiple National Science Foun- dation initiatives including but not limited to ATE, GK12, ITEST, REU, RET, S-STEM, and STEP grant initiatives.Ms. Rachelle Reisberg, Northeastern University Rachelle Reisberg is the Assistant Dean for for Undergraduate Curriculum and Students in the College of Science at
for Working Families (IIWF) report [3] recommendsaligning education systems with economic development initiatives. Advanced manufacturing andengineering disciplines have key roles in the state of Indiana and the nation’s economic growth.By increasing the number of graduates in both MET and SM, this project supports and enhancesthe economic growth within the state and nationally. Also, being involved in the co-curricularactivities and industry partnerships will help the students improve the very skills the workplacedemands and build on the initial support provided by the scholarship to produce highlyemployable graduates.BackgroundIn fall of 2009, ISU was awarded its first S-STEM program (NSF #0966219) and initially had anundergraduate
Educational Research Association and American Evaluation Association, in addition to ASEE. Dr. Brawner is also an Exten- sion Services Consultant for the National Center for Women in Information Technology (NCWIT) and, in that role, advises computer science and engineering departments on diversifying their undergraduate student population. She remains an active researcher, including studying academic policies, gender and ethnicity issues, transfers, and matriculation models with MIDFIELD as well as student veterans in engi- neering. Her evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Mr. Behzad Beigpourian, Purdue University at West Lafayette
inthe workplace.As part of an NSF S-STEM grant, the University of Wisconsin - Platteville implemented a seriesof professional development opportunities to STEM Master Students on a variety of topics. Inasking students about topics they wanted, students reported a need for soft skills. Knowing thestudents desire to learn about soft skills and knowing that employers find soft skills essential, theteam wanted to determine how effective incorporating professional development opportunities,called “Scholar Spots,” to the scholarship program were at increasing the student’s ability in thetopic areas.The team decided to advance students’ learning about soft skills through a series of monthlywebinars, dubbed “Scholar Spots.” Each spot was required
-fall bridge experience and two common courses, was founded in 2012 and has beenoperating with National Science Foundation (NSF) S-STEM funding since 2016. Students whoreceived S-STEM funded scholarships are required to participate in focus groups, one-on-oneinterviews, and complete Longitudinal Assessment of Engineering Self-Efficacy (LAESE),Motivated Strategies for Learning Questionnaire (MSLQ), and GRIT questionnaires eachsemester.The researchers applied qualitative coding methods to evaluate student responses from focusgroups and one-on-one interviews which were conducted from 2017 to 2019. Questions examinedin this paper include:1) How would you describe an engineer?2) Please describe what you think an engineer does on a daily basis.3
develop linkages and articulations with 2-year schools and their S-STEM programs, (iii) torecruit, retain, and graduate 78 low-income students, and place them in industry or graduateschools, (iv) to generate knowledge about the program elements that can help other universities,and (v) to serve as a model for other universities to provide vertical transfer students access tothe baccalaureate degree.VTAB uses lessons learned from an earlier TiPi (Transfer Pipeline) project to achieve the firstthree goals [2]. The fourth goal is addressed through the use of online surveys and focus groupinterviews conducted by an outside evaluator. The TiPi project began in June 2012 funded by afour-year grant of $599,984 from NSF. It provided scholarship support of
committees and initiatives included focus areas around advising &graduation, applied learning, first year experience, academic progression (persistence), studentengagement, student wellness and student financial [7]. Additionally, the university has many nationally known scholar programs that haveshown to increase student persistence in the STEM fields. This includes the Center for Women inTechnology (CWIT), Meyerhoff Scholars program, an Honors College and S-STEM scholars(just in mechanical engineering).Literature reviewSocial Cognitive Career Theory: Influences of Career Choices. As an important foundation of this research the Social Cognitive Career Theory (SCCT)was used as the framework for developing the survey instrument
- neering. Her evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Mr. Russell Andrew Long, Russell Long, M.Ed. was the Director of Project Assessment at the Purdue University School of Engineer- ing Education (retired) and is Managing Director of The Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD). He has extensive experience in performance fund- ing, large data set analysis, program review, assessment and student services in higher education. One of his greatest strengths lies in analyzing data related to student learning outcomes and, therefore, to im- proving institutional effectiveness. His work with
is also an Exten- sion Services Consultant for the National Center for Women in Information Technology (NCWIT) and, in that role, advises computer science and engineering departments on diversifying their undergraduate student population. She remains an active researcher, including studying academic policies, gender and ethnicity issues, transfers, and matriculation models with MIDFIELD as well as student veterans in engi- neering. Her evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Dr. Rebecca Brent, Education Designs, Inc Rebecca Brent is President of Education Designs, Inc., a consulting firm located in Chapel Hill, N.C. She is a
Award for Excellence in Service-Learning. Dr. Vernaza does research in engineering education (active learning techniques) and high-strain deformation of materials. She is currently the PI of an NSF S-STEM. She is the ASEE North Central Section past chair until 2021.Dr. Alexa N. Rihana Abdallah, University of Detroit Mercy Alexa Rihana Abdallah is a professor of civil and environmental engineering at the University of Detroit Mercy, rihanaa@udmercy.eduDr. Christina Remucal, University of Wisconsin-Madison Associate Professor Christy Remucal (n´ee Christina Ren´ee Keenan) leads the Aquatic Chemistry group at the University of Wisconsin, Madison. She is a faculty member in the Department of Civil and En- vironmental
Department, and Principal Investigator of the NSF S-STEM grant at AHC. He serves as Program Chair of the Two-Year College Division of ASEE, and Vice Chair/Community Colleges for the Pacific Southwest Section of ASEE.Dr. Milo Koretsky, Oregon State University Milo Koretsky is a Professor of Chemical Engineering at Oregon State University. He received his B.S. and M.S. degrees from UC San Diego and his Ph.D. from UC Berkeley, all in Chemical Engineering. He currently has research activity in areas related engineering education and is interested in integrating technology into effective educational practices and in promoting the use of higher-level cognitive skills in engineering problem solving. His research interests
. Desselles. “S-STEM Summer Scholarship for a Sophomore Bridge: Year 1 in Review”. Proceedings of the 125th ASEE Annual Conference and Exposition, Salt Lake City, UT, 2018.[7] J. FitzSimmons, C. Levesque-Bristol, E. M. Bonem, E. A. Lott, L. C. Parker. “Education Redesigned: Impacting Teaching and Learning through a Faculty Development Course Redesign Program”. Proceedings of the 126th Annual Conference & Exposition, Tampa, FL, 2019.[8] C. Gordon, H. Sevin. “A Supplemental Instruction Model for Engineering Physics Instruction”. Proceedings of the 122nd Annual Conference and Exposition, Seattle, WA, 2015.[9] J.D. Karpicke and J.R. Blunt, 2011. Retrieval practice produces more learning than elaborate studying with concept
Director of Pre-collegiate Outreach Programs at Worcester Polytechnic Institute. Meadows works with K-12 S STEM outreach programs during the summer and academic year. c American Society for Engineering Education, 2020 Building and Evaluating a Multi-tiered Mentor Program to Introduce Research to High School Women (Evaluation)AbstractWorcester Polytechnic Institute (WPI) has developed the Women’s Research and MentoringProgram (WRAMP) with the goal of encouraging more women to consider advanced degrees inscience, technology, engineering, and mathematics (STEM). A multi-tiered mentor program hasevolved to place two local high school students in a graduate student mentor’s research lab
, dissemination of the resultsof this work is expected to provide a model for institutional implementation of evidence-basedpractices at colleges or universities of similar size and/or student body demographics as AAMU,a land-granted minority serving university.AcknowledgmentThis study has been supported by the S-STEM program of National Science Foundation (NSF)and MSEIP program of Department of Education (DOEd). The authors greatly appreciate thesupport and encouragement from the NSF and DOEd program officers and university colleagues.References 1. Chang, M. J., Cerna, O., Han, J., & Sáenz, V. The contradictory roles of institutional status in retaining underrepresented minorities in biomedical and behavioral science majors. The Review of
evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Dr. Joyce B. Main, Purdue University-Main Campus, West Lafayette (College of Engineering) Joyce B. Main is Associate Professor of Engineering Education at Purdue University. She holds a Ph.D. in Learning, Teaching, and Social Policy from Cornell University, and an Ed.M. in Administration, Planning, and Social Policy from the Harvard Graduate School of Education. c American Society for Engineering Education, 2020 Military Veteran Students’ Pathways in Engineering Education (Year 6)AbstractThis National Science Foundation (NSF) Research in Engineering Education (REE)-fundedproject
federally funded projects. Dr. Sydlik’s interests are in supporting efforts to improve the educational experiences and outcomes of undergraduate and graduate STEM students. She is or has been the lead external evaluator for a number of STEM and NSF-funded projects, including an ERC education project, an NSF TUES III, a WIDER project, an NSF EEC project through WGBH Boston, two NSF RET projects, an S-STEM project, a CPATH project, and a CCLI Phase II project. She also currently serves as the internal evaluator for WMU’s Howard Hughes Medical project, and has contributed to other current and completed evaluations of NSF-funded projects.Dr. Allison Godwin, Purdue University at West Lafayette Allison Godwin, Ph.D. is
at University of Minnesota and her Bachelor of Science in Mechanical Engineering at Iowa State University. She teaches courses in both Industrial and Mechanical Engineering at SAU, focusing in Engineering Graphics, Manufacturing, the Engineering Sciences, and Design. She was recently the PI of an NSF S-STEM grant to recruit rural stu- dents from Iowa and Illinois into STEM. Dr. Prosise mentors the collegiate chapter of SWE and organizes many outreach events encourage girls to go into STEM. She leads a study-abroad trip for engineering students to Brazil every-other-year, where students design, build, and implement assistive technologies for people with disabilities. Her research focus is to develop
. One KickStarter HSI, aparticipant in HSI ATE Hub Cohort 1, submitted a proposal to ATE and remains underconsideration for an award. Thirty HSIs have participated in the first six Cohorts ofMentor-Connect of which 23 submitted proposals to ATE, with an award rate of 70%. It isworth noting three declinations and two missed submissions during Mentor-Connect were laterawarded ATE grants on subsequent attempts. Before the HSI ATE Hub, 10 HSIs from 3KickStarter Cohorts submitted proposals to ATE, with an award rate of 75%. An additional 24proposals were submitted to other NSF programs (e.g. HSI, S-STEM) by 2-year HSIs inKickStarter with an overall award rate of 50%.Cohort 1Of 32 total applicants to Mentor-Connect, 22 were accepted to the Mentor
this field including learning and predictive analytics for student success, S-Stem NSF grant, Research Practitioner Partnership NSF grant, and Spatial Reasoning Impact Study in CS1.Nasrin Dehbozorgi, University of North Carolina at Charlotte Researcher and Ph.D. candidate in the department of Computer Science at University of North Carolina at Charlotte. Conducting research in the area of CSE by applying AI/NLP to do learning analytics, devel- oping models to operationalize attitude in collaborative conversations and pedagogical design patterns.Aileen Benedict, University of North Carolina at Charlotte Aileen Benedict is a Ph.D. student and GAANN Fellow at UNC Charlotte, who has been mentored in teaching since 2016
National Center for Women in Information Technology (NCWIT) and, in that role, advises computer science and engineering departments on diversifying their undergraduate student population. She remains an active researcher, including studying academic policies, gender and ethnicity issues, transfers, and matriculation models with MIDFIELD as well as student veterans in engi- neering. Her evaluation work includes evaluating teamwork models, broadening participation initiatives, and S-STEM and LSAMP programs.Dr. Susan M Lord, University of San Diego Susan M. Lord received a B.S. from Cornell University in Materials Science and Electrical Engineering (EE) and the M.S. and Ph.D. in EE from Stanford University. She is
success in their chosen majors. Thisdecision was also a result of the authors’ interest on SVS literature and the successful experienceof offering a pilot face-to-face (FTF) training on campus to improve SVS for 6 talented, low-income students in an NSF S-STEM scholarship program in Spring ’14. Previous studies in theSVS subject [1], [2], [3] report that well-developed SVS lead to students’ success in Engineeringand Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics.Bairaktarova et al. [4] mention that aptitude in spatial skills is gradually becoming a standardassessment of an individual’s likelihood to succeed as an engineer.Support from industry provided the funds needed to acquire training materials created by Sorby