Michigan. She has a B.E. in Chemical Engineering from the University of Dayton (2003) and a Ph.D. in Engineering Edu- cation from Purdue University (2008). Her research focuses on strategies for design innovations through divergent and convergent thinking as well as through deep needs and community assessments using design ethnography, and translating those strategies to design tools and education. She teaches design and en- trepreneurship courses at the undergraduate and graduate levels, focusing on front-end design processes.Dr. Lisa R. Lattuca, University of Michigan Lisa Lattuca is Professor of Higher Education, a member of the Core Faculty in the Engineering Education Research Program, and holds a courtesy
four informational BR200 modules in Moodle. These enhance-ments were in place for the Fall 2020 and Spring 2021 sessions. While the instructor rated him-self as very computer-literate, this RISE course proved very challenging. That continued whenthe instructor implemented more RISE principles during the compressed 12-week fall 2020BR200 course. It truly was like teaching a new course for the first time!RISE introduced faculty to the tools needed to skillfully design and deliver courses for this nextphase in higher education.7 Dynamic facilitators who were experts in online learning led it.Faculty built elements of their online course(s) while learning and using research-informed,instructional best practices. Workshop concepts were grounded in
. Robinson, “Is it time for academic preparation of future regulatory affairs professionals?,” J Med Device Reg, pp. 18-23, May 2006.[2] K. Cardinal, “A case-study based course on ‘Device Evaluation and FDA Approval’,” in Proceedings of the 2008 ASEE Annual Conference & Exposition, Pittsburgh, PA , USA, 2008, pp. 13.10.1-13.10.6.[3] R. H. Allen, S. Acharya, C. Jancuk, and A. A. Shoukas, “Sharing best practices in teaching biomedical engineering design,” Ann. Biomed. Eng., vol. 41, no. 9, pp. 1869-1879.[4] B. Perlmann and R. Varma, “Teaching engineering ethics,” in Proceedings of the 2001 ASEE Annual Conference & Exposition, Albuquerque, NM, USA, 2008, pp. 6.940.1 – 6.940.11.[5] H. Miller, “The blessings and benefits of using
Learning: Research and Practice, 15:2, pp.126-138, 2018.[9] R.M. Felder and R. Brent (2017) Learner-Centered Teaching: How and Why? LearningAbstracts (League for Innovation in the Community College), 20(5), May 2017[10] P. G. Koles, A. Stolfi, N. J. Borges, S. Nelson, and D. X. Parmelee, “The impact of team-based learning on medical students' academic performance.,” Acad Med, vol. 85, no. 11, pp.1739–1745, Nov. 2010.[11] M. L. Epstein and G. M. Brosvic, “Students prefer the immediate feedback assessmenttechnique,” Psychol Rep, vol. 90, no. 3, pp. 1136–1138, Jun. 2002.[12] E. Haase, B.N. Phan, and H.R. Goldberg (2017), Molecules and Cells: Team-based andMulti-modal Learning Improves Comprehension and Increases Content Retention, 2017 ASEEAnnual
-Milwaukee.Dr. April Dukes, University of Pittsburgh April Dukes (aprila@pitt.edu) is the Faculty and Future Faculty Program Director for the Engineering Educational Research Center (EERC) and the Institutional Co-leader for Pitt-CIRTL (Center for the Inte- gration of Research, Teaching, and Learning) at the University of Pittsburgh. April studied at Winthrop University, earning a BS degree in Chemistry and BA degree in Psychology in 2000. She then completed her PhD in 2007 at the University of Pittsburgh, studying oxidative stress in in vitro models of Parkinson’s disease. During her prior graduate and postdoctoral work in neurodegeneration, April mentored several undergraduate, graduate, and clinical researchers and
teaching in the University of Illinois at Chicago’s DPT program in 2010. She became a board certified pediatric clinical specialist in 2012, completed her Assistive Technology Certificate from UIC in 2015, and earned her PhD in Disability Studies from UIC in 2016. She joined the University of Washington’s Department of Mechanical Engineering as a postdoctoral researcher in September of 2016. Heather has a special in- terest in user-centered design and participatory research, and has been a lab member of the GoBabyGo program, which creates custom safety and accessibility modifications to commercially available battery powered toy ride-on cars for children with disabilities, since 2012. Heather’s research focuses on inves
did not explicitly capture the “analysis” and“modeling” aspects of this ABET criterion because they do not necessitate the design or creationof something new. As these terms lend themselves easily to research efforts in BME (e.g.,proteomics analysis or cardiovascular disease modeling), exploring the degree to whichundergraduate students are cognizant of these aspects of the field may yield important insightsinto a student’s choice to attend graduate school or pursue a research-based career.d) Making Measurements on and Interpreting Data from Living Systems This was the only criterion for which an analog was not identified in the student-provided definitions of BME. It represents an important differentiation from all other ABET
,institution-specific requirements can have a dominating impact on the depth/breadth balance andhow they are attained. As a primary example, many large engineering schools were forced tomake challenging, required curricular alterations when state legislatures required a reduction ofhours while maintaining ABET engineering hours for accreditation. These changes necessitatedreduction of the requirements for fundamental science and traditional engineering courses fromother departments to make room for courses with heavy design content, societal context, andintegrated communication skills.Due to these changes, the curriculum has become increasingly rigid, which limits students’opportunities to deeply explore technical content. To ensure depth, many
Engineering at Michigan. Cassie received a B.A. in Engineering Sciences at Wartburg College (Waverly, IA) and a M.S. in BME from the University of Michigan (Ann Arbor).Annie AnMeng Wang, University of MichiganDr. Aileen Huang-Saad, Northeastern University In February 2021 Dr. Huang-Saad joined the Bioengineering faculty at Northeastern University and be- came the Director of Life Sciences and Engineering Programs at The Roux Institute (Portland, Maine). Dr. Huang-Saad has a fourteen- year history of bringing about organizational change in higher educa- tion, leveraging evidence-based practices at University of Michigan. She created the U-M BME graduate design program, co-founded the U-M College of Engineering Center for
Engineering at The University of Texas at Austin as well as Adjunct Professor of Imaging Physics at The University of Texas MD Anderson Cancer Center. Dr. Markey is a 1994 graduate of the Illinois Mathematics and Science Academy. She has a B.S. in computational biology (1998). Dr. Markey earned her Ph.D. in biomedical engineering (2002), along with a certificate in bioinformatics, from Duke University. Dr. Markey has been recognized for excellence in research and teaching with awards from organizations such as the American Medical Informatics Association, the American Society for Engineering Education, the American Cancer Society, and the Society for Women’s Health Research. She is a Fellow of both the American Association
University (Fort Collins, CO, USA). She has experience working as a graduate teaching assistant for computer aided engineering, biomedical engi- neering capstone design, and biomedical engineering introductory classes. Nicole’s engineering education interests include active learning, metacognitive thinking, and the use of technology platforms. Her doc- toral research is focused on the material properties of spinal cord tissues to contribute to the understanding and treatment of spinal cord injuries.Jasmine Erin Nejad, Colorado State University Jasmine Nejad is a PhD student in the Biomedical Engineering program at Colorado State University (CSU). She completed her B.S. in Biochemistry and M.S. in Biomedical Engineering at