. Pablo Perez-Pinera, University of Illinois at Urbana ChampaignDr. Karin Jensen, University of Illinois at Urbana Champaign Karin Jensen, Ph.D. is a Teaching Assistant Professor in bioengineering at the University of Illinois Urbana-Champaign. Her research interests include student mental health and wellness, engineering stu- dent career pathways, and engagement of engineering faculty in engineering education research. She was awarded a CAREER award from the National Science Foundation for her research on undergraduate mental health in engineering programs. Before joining UIUC she completed a post-doctoral fellowship at Sanofi Oncology in Cambridge, MA. She earned a bachelor’s degree in biological engineering from
especially crucial towards proper career development. The data attained fromlab assignments can remarkably improve students’ understanding of classroom concepts byallowing students to observe the strengths and weakness of various scientific theories.Compared to traditional engineering disciplines (civil, mechanical, etc.), biological engineering(BE) students have been found to have different motivations for entering the engineering field;therefore, it is paramount that the BE engineering education community capitalizes on thisdifference to address the systemically lackluster engineering student retention rate.[1] BE studentsare largely driven to the field for the opportunity to benefit society, which differs compared totraditional engineering majors
across-the-board gains in everyaspect of ability, but most so in “Learn new things,” “Empathize,” “Communicate,” and“Document technical matters.” Each of these had more than double the effect size of the nextmost affected task – “Identify a need.” This is especially interesting because needs identificationis not only a primary goal of our program, but also a goal of NIBIB R25 programs in general[11].To broaden impactThe inaugural year of our program showed where there is room for improvement with secondcohort. The first of these improvements, already enacted, is to urge students to apply who do notconsider themselves to be pre-med. This did indeed change the spectrum of career intentions inour next cohort. We are also requiring Scholars to
one two-hour laboratory session eachweek. Following training, students are given access to the department maker space, whichfeatures 3-D printers, circuit fabrication stations, and hand and power tools. Approximately 50%of the lecture topics in the course provide a survey of biomedical engineering careers paths andour curriculum, and the remaining lecture topics relate to the design project. These includepresentations covering computer-aided drawing, electric circuits, cardiovascular physiology, andengineering standards. Laboratory activities provide practice in developing skills in usingSolidWorks (Dassault Systemes), making electrical measurements, fabricating circuits, and using3-D printers. Students work in pairs on the term design
careers, research isclear that providing students autonomy in their learning environment fosters collaboration andstudent-driven learning [8]–[10]. After completing their chosen subcomponents, students thencombined their parts in order to create the completed circuit. Attendance is voluntary and is notfactored into students’ grades. The lessons are developed by the Graduate Teaching Assistant(GTA) and are complete with step-by-step instructions. An example circuit is shown in Figure 1.The remaining lessons can be found in an online repository [11].Surveys were distributed to students at the end of the semester. Survey questions were pairedsuch that we could compare students’ assessment of #FunTimesWithTheTA with that of thenormal course. We
means that there is a need tofurther emphasize these kinds of skills early in higher education curricula so that students cangrasp the importance of these skills in the beginning of their academic career and long beforestarting their professional career [2]. In an effort to train senior biomedical engineering studentsto be more effective writers we adopted a two-stage approach that began with first training theprofessors to effectively teach students to be better writers (Maroon Institute for WritingExcellence) then employing two strategies: Writing-to-Learn and “Scaffolding” Writing in thecourse to develop our students into effective writers (Figure 1). Figure 1. Flowchart of Intervention to Improve Effective Writing SkillsMaroon
analyzed for enrollment, as well as diversity of courses available in the tracks. Adiversity score was calculated for each track by counting how many of each mechanics,electrical, programming, cell, and materials science classes were in each track offering andcomputing the standard deviation of each track, where high numbers meant less diversity incourses.In addition, faculty, alumni and current student surveys were collected through an online surveysystem asking a variety of questions about importance of skills, topics, ranking of courses andpreference of topics, as well as career alignment with track area. The survey was sent to 400people and a 34% response rate was achieved with an even gender split amongst participants.The survey of both
interests include developing and teaching courses for an online professional masters program, courses in genomics and genomic technologies, and labora- tory experiences. Thickman performs educational research and continuous improvement activities toward the goal of improving student outcomes. Thickman also engages in online education and research in this area to improve access to bioengineering education for students at various points in their careers. c American Society for Engineering Education, 2018 Teaching Genomics and Genomic Technologies to Biomedical Engineers: Building Skills for the Genomics WorldAbstractDuring the last decade, the cost of sequencing DNA has plunged
Paper ID #34434Improving Programming Content Delivery in an Introductory BiomechanicsCourse Using a Blended Classroom ApproachMr. Jeffery Ethan Joll II, Vanderbilt University Ethan is in the final year of his Ph.D. in Biomedical Engineering at Vanderbilt University where he works under Dave Merryman. His laboratory work investigates the mechanobiological underpinnings of cal- cific aortic valve disease and post-menopausal osteoporosis. His education research focuses on blended learning strategies to improve content delivery in undergraduate biomedical engineering courses. He is investigating careers in educational research
. Available: https://learn.org/articles/What_is_Tissue_Engineering.html[4] (2019, September 3). Biomedical Engineer: Career Definition, Job Outlook, and Education Requirements. Available: https://learn.org/articles/Biomedical_Engineer_Career_Definition_Job_Outlook_and_Ed ucation_Requirements.html[5] C. D. Lam, M.; Mehrpouyan, H.; Hughes, R. , "Summer Engineering Outreach Program for High School Students: Survey and Analysis," American Society for Engineering Education, 2014.[6] A. C. Warren, H.; Ludwig, M.; Heath, K.; Specking, E., "Engaging Underrespresented Students in Engineering through Targeted and Thematic Summer Camp Content (Work in Progress, Diversity)," American Society for
an ARISE scholar in the Grainger College of Engineering. Sara performs undergrad- uate research in soft robotics and engineering education funded by the IDEA Institute at UIUC. Sara is interested in pursuing a career in Engineering Education as well as furthering her education upon gradu- ating.Dr. Karin Jensen, University of Illinois at Urbana - Champaign Karin Jensen, Ph.D. is a Teaching Assistant Professor in bioengineering at the University of Illinois Urbana-Champaign. Her research interests include student mental health and wellness, engineering stu- dent career pathways, and engagement of engineering faculty in engineering education research. She was awarded a CAREER award from the National Science
-step surgical procedure from amanufacturer of similar devices, and video material of a simulated surgery and actual surgeryfrom various websites. In addition, if resources were available, students had an opportunity toobserve for in-class demonstration and to have hands-on experiences with surgical procedureusing artificial bone (SAWBONES. Vashon, WA USA) to obtain a better understanding of therelationship between implant design andsurgical procedures/tools. Instructor hadadequate trainings and experiences in surgicalprocedure for various orthopedic devices duringhis career in medical device industry, and wasable to demonstrate a correct procedure. For thelast three academic years, surgical instrumentof the IM nail, external fixation for long
Glen Livesay is a Professor of Biology and Biomedical Engineering; he co-developed and co-teaches the biomedical engineering capstone design sequence at Rose-Hulman Institute of Technology. Glen’s educational research interests include student learning styles, increasing student engagement with hands- on activities, and more recently, creativity & design. He has received an NSF CAREER award and served as a Fellow at the National Effective Teaching Institute.Prof. Jay Patrick McCormack, Rose-Hulman Institute of Technology Jay McCormack is an associate professor in the mechanical engineering department at Rose-Hulman Institute of Technology. Dr. McCormack received his PhD in mechanical engineering from Carnegie
Design Research Methods, Human Experience in Design and Interdisciplinary Product Development. Susan collaborates with non-design faculty to teach the design process, and helps students discover opportunities and solve problems with design. She is the co-instructor of the Clinical Immersion program in the Department of BioEngineering. Susan balances teaching with her professional career as a design researcher, consultant and strategist.Prof. Kimberlee M Wilkens, University of Illinois at Chicago Kimberlee Wilkens is an alumna and instructor in the School of Design, the Director of Undergraduate Studies for Industrial Design, with an affiliate position in the Department of Urology. Kimberlee’s drive for
of programming may each be most relevant for different types of careers,but BME programs generally do not know what careers their students will have, and with acrowded curriculum, choices have to be made about what type of computing course(s) to require.In some cases this decision is made for all programs by the engineering school, but more than60% of universities give BME the responsibility of deciding on fundamental programmingcourses, and additional applications courses are at the discretion of the department. The data may be useful in several ways. They show a diversity of approaches, withMATLAB, CAD, and modeling being the most prevalent courses. In general, they allow aprogram to judge whether it is in the mainstream of BME
also are reviewing our courseinterventions to determine if better methods can be employed such as including more active learningprojects to improve student engagement with each identity. Finally, we will follow up with the students asthey progress through their academic careers to see if any of them continue projects through toprototyping and testing stages or present ideas at entrepreneurial competitions or conferences.Acknowledgements: Research supported by VentureWell Foundation Grant #20071-19References:[1] Byers, T., Seelig, T., Sheppard, S., & Weilerstein, P. (2013). Its role in engineering education. TheBridge, 43(2), 35-40.[2] Cardon, M. S., Gregoire, D. A., Stevens, C. E., & Patel, P. C. (2013). Measuring
Paper ID #29008Work In Progress: Improving student engagement in undergraduatebioinformatics through research contributionsDr. Jessica Dare Kaufman, Endicott College Jessica Kaufman began her engineering career as a chemical engineering major at The Cooper Union for the Advancement of Science and Art. After graduation, she worked as a process engineer, primarily in food and pharmaceuticals. Her work in biopharmaceuticals inspired her to earn a doctorate in Biomedical Engineering at Boston University. Since 2008, Jessica has worked at Endicott College and taught a wide range of biotechnology and bioengineering courses. Her
, achievement, and persistence in student-centered courses.Prof. Mark James Fisher, Northwestern University Mark teaches product development and entrepreneurial classes at Northwestern University in addition to consulting to a variety of medical device companies and global health non-profits in the US and interna- tionally. He has thirty plus years of product development experience in industry and in consulting. Mark has a particular interest in developing curricula focussed on providing students with both the engineering and non-engineering skills required to be successful in careers in industry and in applied research. c American Society for Engineering Education, 2018 Work in Progress
Arbor) and her Ph.D. (2015) in Bioengineering from the University of Pennsylvania. c American Society for Engineering Education, 2018 Effective Use of Engineering Standards in Biomedical EngineeringIntroductionThe use of engineering standards is an important skill for biomedical engineering (BME)students to succeed in their post-baccalaureate careers in the engineering profession [1].Engineering standards provide a framework for establishing and defining design constraints,working within regulatory and policy guidelines, and for developing and implementingappropriate design verification and validation methods [2,3]. Across BME departments there is astrong emphasis on the use of standards in Capstone or
include developing and teaching courses for an online professional masters program, courses in genomics and genomic technologies, and labora- tory experiences. Thickman performs educational research and continuous improvement activities toward the goal of improving student outcomes. Thickman also engages in online education and research in this area to improve access to bioengineering education for students at various points in their careers. c American Society for Engineering Education, 2018 Work in progress: Flipping Synchronous Online Courses to Increase Engagement and Enhance LearningIntroduction:Many universities are increasing educational opportunities through online
: Integrating Medical Economic Perspectives through Information Literacy in a Biomedical Clinical Immersion Design Course,” presented at the 2017 ASEE Annual Conference & Exposition, 2017.[3] VentureWell, “DEBUT competition guidelines,” VentureWell, 21-Jan-2015. [Online]. Available: https://venturewell.org/guidelines/. [Accessed: 18-Oct-2017].[4] National Institutes of Health, “Design by Biomedical Undergraduate Teams (DEBUT) Challenge,” National Institute of Biomedical Imaging and Bioengineering, 22-May-2013. [Online]. Available: https://www.nibib.nih.gov/training-careers/undergraduate-graduate/design- biomedical-undergraduate-teams-debut-challenge. [Accessed: 17-Mar-2017].
Engineering (BME) from The Ohio State University (OSU), before joining the OSU BME Department as an Assistant Professor of Practice in 2014. Her roles include designing and teaching undergraduate BME laboratory courses, and mentoring multidisciplinary senior capstone teams on rehabilitation engineering and medical device design projects. She also leads K-12 engineering outreach events, and is pursuing scholarship in student technical communication skills and preparing BME students for careers in industry. c American Society for Engineering Education, 2019 Work in Progress:Biomedical Engineering Students’ Perspectives on a Laboratory Technical Writing
Temple University, Mr. Caccese began his consulting career in 2019. Mr. Caccese utilizes his knowledge to assist in investigating and assessing the forces, accelerations, and motions experienced by the human body. Mr. Caccese is also developing the ability to review medical records for the purpose of assisting in the evaluation of the extent, distribution, and severity of injuries and the past medical history as it relates to the biomechanical analysis and claims, while assessing the biome- chanical forces that could lead to the causation of any claimed injuries. He also has experience reviewing a variety of different imaging modalities, including Fourier Transform Infrared Imaging Spectroscopy (FTIR-IS) for
consider the impact of reading these letters.*Collaboration, Reflecting on team membership: After a team project, each student writesProductive relationships about their contribution to their team and the value of the team experience.Personal contributions to Reflecting on complementary strengths: At the beginning of the team serviceeffectiveness of group project, each student writes about how their leadership abilities interact with their teammates’ abilities to help ensure project success. Reflecting on expert accounts of leadership: After guest presentations about leadership in bioengineering careers, students write about
engineering students tosucceed in a wide variety of careers. This necessity is recognized by ABET in student outcome 3“an ability to communicate effectively with a range of audiences” [1]. Despite this, students maynot view written communication skills as an important skill for engineers. Technical writinginstruction and practice is often implemented in undergraduate laboratory courses where studentswrite standard lab reports (abstract, introduction, materials and methods, results, discussion) thatmost closely resemble a scientific journal article. In an effort to demonstrate to students how theymight communicate about experimental data in different ways and to prompt them to considercommunicating data to a range of audiences and for varying purposes
biomedical engineer turned chemical engineer, Diane has developed a unique perspective when it comes to utilizing a broad set of tools in both her research and classroom. She aspires to share her enthusiasm for biology and engineering through teaching and mentoring in the next stage of her career as faculty.Dr. Conrad M Zapanta, Carnegie Mellon University Conrad M. Zapanta is the Associate Department Head of Undergraduate Education and a Teaching Pro- fessor in the Department of Biomedical Engineering at Carnegie Mellon University in Pittsburgh, PA. Dr. Zapanta received his Ph.D. in Bioengineering from the Pennsylvania State University in University Park, PA, and his B.S. in Mechanical Engineering (with an option in
thegrade and course requirements. Another 6 students met the grade requirements but did notattempt one of the five required classes. Of the Switchers that met all the requirements, they weredisproportionately female (n=16), that is ~76% of the group. Almost all of the Switchers that metall of the requirements, switched into another major that was STM, except for a couple thatswitched into another engineering major. Speculating, it is possible that some of the highachieving students are leaving for another typical pre-med major, which may be perceived as“easier” than BME. They may also be leaving due to attitudes about perceived career prospectsof BME majors relative to other STEM majors, documented by others [10], [11]. Clearly, thereis a
focused on gait analysis and the biome- chanics of running related to various injuries including hamstring strains and injuries of the knee.Dr. Naomi C. Chesler, University of Wisconsin, Madison Naomi C. Chesler is Professor of Biomedical Engineering with an affiliate appointment in Educational Psychology. Her research interests include vascular biomechanics, hemodynamics and cardiac function as well as the factors that motivate students to pursue and persist in engineering careers, with a focus on women and under-represented minorities. c American Society for Engineering Education, 2019 The Teaching Assistant’s Perspective on “Flipping” an Undergraduate Biomechanics Course
designing process, and design education.Dr. Michele J. Grimm, Michigan State University Michele J. Grimm is the Wielenga Creative Engineering Endowed Professor of Mechanical Engineering. Her research has focused on injury biomechanics – from characterizing important tissue properties to developing appropriate models for the assessment of injury mechanisms. Most recently, this has included working with obstetricians to identify the pathomechanics of neonatal brachial plexus injury. Based on this work, she served on the American College of Obstetricians and Gynecologists Task Force on Neonatal Brachial Plexus Palsy. In addition to her scientific research, Dr. Grimm has spent a large part of her career focused on curriculum
applicationsIntroductionMachining and manufacturing are essential skills that engineering students learn during theirundergraduate education to prepare them for their future careers in academia or industry.Because of the unique circumstances due to the COVID-19 pandemic, biomedical engineering(BME) educators have been challenged with developing modified curricula to accommodaterestrictions or prohibitions on in-person courses. The UC Davis BME introductory machiningand manufacturing course has traditionally employed a hands-on approach to teach students thenecessary skills needed to apply to the prototyping of their senior design projects. However, dueto prohibitions on in-person instruction, the BME machining course underwent significantredesign to enable an entirely