efforts on Mathematics Socialization and identity amongst pre-service elementary teachers, an effort at understanding the reasons for lack of interest in the subject with a view to proffer solution and engender/motivate interest amongst this group that will eventually reflect in their classroom practices. She is currently a Graduate Assistant with UIC Engage, a commu- nity focused project that provides help for less-privileged students from K-8 in mathematics, reading and writing. She continues to work as a substitute teacher occasionally to keep abreast with current practices within the school system. Her work as a Research Assistant for the BEST program has turned out to be one of her best experiences as a
research? What is the best way of communicating my research to these different audiences? What would prevent my research from being translated into practice and how can I plan my research to circumvent these barriers? How can I evaluate if my knowledge translation efforts are effective?These questions demonstrate that knowledge translation is inherent to every research endeavourand graduate students should be introduced to this concept early in their studies to improve theirability to communicate their motivations and implications of their work.ApproachThe Institute of Biomaterials and Biomedical Engineering (IBBME) at the University of Torontooffers a graduate course (BME1450: Bioengineering Science) that focuses primarily
Paper ID #23255Modeling and Design: a Hands-on Introduction to Biomedical EngineeringDr. Eileen Haase PhD, Johns Hopkins University Eileen Haase is the Director of Undergraduate Studies and a Senior Lecturer in Biomedical Engineering at Johns Hopkins University. She is also chair of the Johns Hopkins Applied Biomedical Engineering graduate program for Engineering Professionals. She received her BS in ESM from Virginia Tech, and her MS EE and PhD in Biomedical Engineering from Johns Hopkins. c American Society for Engineering Education, 2018 Modeling and Design: A hands-on Introduction to Biomedical
Paper ID #21504Exploring Biomedical Engineering Students’ Self-Raised Motivations for En-gaging in Instructional DesignJacqueline Handley, University of Michigan Jacqueline Handley is a graduate student at the University of Michigan, in Science Education. Her back- ground is in Material Science and Engineering, with an emphasis on Biomaterials Design. She is inter- ested in, broadly, how best bridge engineering practice and education. More specifically, she is interested in access to and inclusion in engineering at the K-12 level.Dr. Aileen Huang-Saad, University of Michigan Aileen is faculty in Engineering Education and
Biology Department at UC Berkeley. She received her doctoral degree in Biochemistry, Molecular, Cellular and Developmental Biology and B.S. degree in Genetics, both from UC Davis.Ozcan Gulacar, University of California, Davis Dr. Gulacar has a Master’s degree in Physical Chemistry and a Ph.D. in Science Education. In the last 15 years, he has worked in settings including international high schools and doctorate granting institutions. He has designed and taught undergraduate/graduate chemistry and science education courses for a wide range of audiences. Due to his interest in investigating the effectiveness of different teaching methods and tools, he has received grants and established collaborations with colleagues
be assessed upon completion of the design course sequence in May 2019. References[1] ABET, Criteria for Accrediting Engineering programs, 2016-2017., General Criterion 5: Curriculum., Retrieved from http://www.abet.org/accreditation/accreditation-criteria/criteria- for-accrediting-engineering-programs-2016-2017/#curriculum.[2] C. Dym, A. Agogino, O. Eris, D. Frey, and L. Leifer, “Engineering design thinking, teaching and learning,” J. Eng. Educ., vol. 86, pp. 103-120, 2005.[3] R. Allen, S. Acharya, C. Jancuk and A. Shoukas, “Sharing best practices in teaching biomedical engineering design,” Annals of Biomed. Eng., vol. 41, pp. 1869-1879, 2013.[4] R. Mertz, “A capstone design course [electrical engineering],” IEEE Trans. Educ
Paper ID #22986An Engineering Design-Oriented First Year Biomedical Engineering Cur-riculumDr. Kay C. Dee, Rose-Hulman Institute of Technology Kay C. Dee received a B.S. degree in chemical engineering from Carnegie Mellon University, and M.Eng. and Ph.D. degrees in biomedical engineering from Rensselaer Polytechnic Institute. After completing her graduate work, Kay C joined the Department of Biomedical Engineering at Tulane University in New Orleans, Louisiana. She later joined the faculty at Rose-Hulman Institute of Technology. She served as the founding Director of the Rose-Hulman Center for the Practice and Scholarship
importance ofproviding undergraduate students open-ended, loosely defined projects, and allowing projectteams to assume responsibility for design and innovation.2. INTRODUCTIONEngineers, clinicians and patients often struggle to find balance between innovative technologyand the human side of medical care. Graduate level educational programs dedicated to teachingbiomedical innovation have seen significant growth in the last decade [1-7]. In addition, the fieldof biomedical engineering has seen a dramatic escalation in activity over the past 20 yearsleading to innovative medical devices and procedures. Due to the multidisciplinary characteristicof the field, biomedical engineering has a diverse research impact, often serving as a bridgebuilder between
-2016-2017/2. Guilford, W.H., Allen, T.E., & Peirce, S.M. “The Forgotten Steps of Engineering Design: Design-Build Experiences and their Downstream Effect on Capstone Design Projects.” Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. https://peer.asee.org/28970, 2017.3. Lattuca, L.R., Terenzini, P.T., & Volkwein, J.F., Engineering change: A study of the impact of EC2000. ABET: Baltimore, 2006.4. Bransford, J. D., Brown, A.L., & Cocking, R.R. (Eds.), How People Learn: Bridging Research and Practice. Washington, DC: National Academy Press, 1999.5. Karweit, N. “Contextual learning: A review and synthesis”, in Educational Reform and Vocational Education, A.M. Milne, Ed. Washington, DC: U.S
devices for lowering body core temperature in patients with major organ ischemia as caused by cardiac arrest, stroke, or traumatic brain injury, and creation of a thermal microenvironment for beds to improve the ability to sleep well. He has published more than 280 refereed papers and book chapters and written or edited seventeen books. His research has led to about three dozen patents and the formation of two medical device companies. He has been faculty advisor to the UT student organization Christian Students on Campus for more than 40 years while mentoring thousands of students therein. His teaching has been focused on courses in Biotransport and BME Senior Design, plus a university-wide course for incoming
, students are developing invaluableskills including: diagnosing, troubleshooting, repairing circuits, designing and building adaptations,soldering, de-soldering, and using diagnostic equipment. These experiences serve to complement andreinforce theory learned in classrooms.Community Outreach and EducationIn addition to learning practical technical skills, students are also challenged by hosting outreach events,such as toy fairs and education programs which can be helpful to both students, parents and professionals.We have conducted 10 events in the past 4 years where the parents and children can come get a new toy,and learn how to modify toys for themselves. Recently we have collaborated with Beta Box, a mobilemakerspace which has enabled us to
not easily practiced in cookie-cutter labs [5,6,7]. Collaborative learning includingpeer-teaching has also been shown to increase student learning [10] in a laboratory environment[3]. Though collaborative, student-led inquiry and peer-teaching has been shown to supportmultiple learning outcomes, it remains unclear how much support students need in laboratorycourses and how such pedagogical methods can influence students’ confidence in their learning.In this approach, inquiry-based learning followed by peer-teaching was used in a QuantitativePhysiological Signal Analysis Lab course for 4 offerings. An iterative, design-based approachwas used to continually analyze and improve the implementation of this pedagogical technique.Continuing from a
. Robinson, “Is it time for academic preparation of future regulatory affairs professionals?,” J Med Device Reg, pp. 18-23, May 2006.[2] K. Cardinal, “A case-study based course on ‘Device Evaluation and FDA Approval’,” in Proceedings of the 2008 ASEE Annual Conference & Exposition, Pittsburgh, PA , USA, 2008, pp. 13.10.1-13.10.6.[3] R. H. Allen, S. Acharya, C. Jancuk, and A. A. Shoukas, “Sharing best practices in teaching biomedical engineering design,” Ann. Biomed. Eng., vol. 41, no. 9, pp. 1869-1879.[4] B. Perlmann and R. Varma, “Teaching engineering ethics,” in Proceedings of the 2001 ASEE Annual Conference & Exposition, Albuquerque, NM, USA, 2008, pp. 6.940.1 – 6.940.11.[5] H. Miller, “The blessings and benefits of using
teaching in the University of Illinois at Chicago’s DPT program in 2010. She became a board certified pediatric clinical specialist in 2012, completed her Assistive Technology Certificate from UIC in 2015, and earned her PhD in Disability Studies from UIC in 2016. She joined the University of Washington’s Department of Mechanical Engineering as a postdoctoral researcher in September of 2016. Heather has a special in- terest in user-centered design and participatory research, and has been a lab member of the GoBabyGo program, which creates custom safety and accessibility modifications to commercially available battery powered toy ride-on cars for children with disabilities, since 2012. Heather’s research focuses on inves
,institution-specific requirements can have a dominating impact on the depth/breadth balance andhow they are attained. As a primary example, many large engineering schools were forced tomake challenging, required curricular alterations when state legislatures required a reduction ofhours while maintaining ABET engineering hours for accreditation. These changes necessitatedreduction of the requirements for fundamental science and traditional engineering courses fromother departments to make room for courses with heavy design content, societal context, andintegrated communication skills.Due to these changes, the curriculum has become increasingly rigid, which limits students’opportunities to deeply explore technical content. To ensure depth, many
Engineering at The University of Texas at Austin as well as Adjunct Professor of Imaging Physics at The University of Texas MD Anderson Cancer Center. Dr. Markey is a 1994 graduate of the Illinois Mathematics and Science Academy. She has a B.S. in computational biology (1998). Dr. Markey earned her Ph.D. in biomedical engineering (2002), along with a certificate in bioinformatics, from Duke University. Dr. Markey has been recognized for excellence in research and teaching with awards from organizations such as the American Medical Informatics Association, the American Society for Engineering Education, the American Cancer Society, and the Society for Women’s Health Research. She is a Fellow of both the American Association
University (Fort Collins, CO, USA). She has experience working as a graduate teaching assistant for computer aided engineering, biomedical engi- neering capstone design, and biomedical engineering introductory classes. Nicole’s engineering education interests include active learning, metacognitive thinking, and the use of technology platforms. Her doc- toral research is focused on the material properties of spinal cord tissues to contribute to the understanding and treatment of spinal cord injuries.Jasmine Erin Nejad, Colorado State University Jasmine Nejad is a PhD student in the Biomedical Engineering program at Colorado State University (CSU). She completed her B.S. in Biochemistry and M.S. in Biomedical Engineering at