, engagement and knowledge retention. ©American Society for Engineering Education, 2023Inculcating the Entrepreneurial Mindset Using a STEAM-based Approach in a Biomedical Engineering Physiology Course Abstract The United States has fallen behind in innovation compared to countries across the world. Despite the presence of promising K-12 programs focused on teaching students innovation andentrepreneurially-minded skills, not enough is being done at the university level. Lack of fundingand trained personnel are plausible reasons. STEAM (Science Technology Engineering Arts and Mathematics) programs have shown promise in improved student learning and skills associated with
healthcaredisparities; projects developed by students are intended to ultimately aid local clinician partners.This course fits logically into the undergraduate biomedical engineering curriculum, but thespecific effects of the course and its specific implementation have yet to be quantified.Methods:To quantify differences in IP creation, the office of Technology Ventures provided data on thenumber of invention disclosures, patent applications, and patents awarded. Long term, IPgeneration can be better quantified via actual awarded patents and this will be tracked in futurework. We ran a query against all the Biomedical Engineering undergraduate students from 2013to 2022 to obtain these numbers. The perceptions and opinions of students were measuredthrough a
Department of Mechanical Engineering. After that, she gained academic and teaching experience by serving as a faculty member at several universities around the world, including WPI, the University of Oregon, the University of Waterloo and the University of Toronto, Victoria University of Technology, and the Technical University of Warsaw. Just prior to joining the University of Connecticut, she worked as a scientist at the Liberty Mutual Research Institute for Safety and Health in Hopkinton for seven years. Her education interests center on multidisciplinary and systems engineering design approaches, and include modelling, data analysis and simulation software. Presently, at the University of Connecticut, she collaborates with
equity-based and collaborative pedagogies and alternative grading strategies. ©American Society for Engineering Education, 2023 Improving Student Perceptions of Learning through Collaborative TestingResearch on college teaching and learning has proposed active learning is a good practice [1].Active learning could be defined as “an interactive and engaging process for students that maybe implemented through the employment of strategies that involve metacognition, discussion,group work, formative assessment, practicing core competencies, live-action visuals, conceptualclass design, worksheets, and/or games” [2]. Active learning approaches in science, technology
opportunities. References[1] American Society for Engineering Education, “Profiles of engineering and engineering technology, 2021,” 2022.[2] American Society for Engineering Education, “Engineering and engineering technology by the numbers 2019,” 2019.[3] E. Higginbotham and M. L. Dahlberg, The impact of COVID-19 on the careers of women in academic sciences, engineering, and medicine. 2021. doi: 10.17226/26061.[4] A. Patrick, M. Borrego, and C. Riegle-Crumb, “Post-graduation plans of undergraduate BME students: Gender, self-efficacy, value, and identity beliefs,” Ann Biomed Eng, vol. 49, no. 5, 2021, doi: 10.1007/s10439-020-02693-9.[5] A. E. Winkler, S. G. Levin
equitable by helping students develop a positive and inclusive scientific identity, while also building skills in educational and organizational program evaluation.Guadalupe Ruiz, University of California, RiversideBasak E Uygun, Massachusetts General HospitalKeisha Varma, University of Minnesota, Twin Cities ©American Society for Engineering Education, 2024 Title: Work in Progress: The NSF ERC REU Boot Camp - An innovative approach to building a sense of community in support of broadening participation in biomedical engineeringIntroductionAs science, technology, engineering, and mathematics (STEM) fields have become a larger partof the United States economy, the education system has
Technology,” presented at the 2014 ASEE Annual Conference & Exposition, Jun. 2014, p. 24.63.1-24.63.21. Accessed: Nov. 09, 2023. [Online]. Available: https://peer.asee.org/a-longitudinal-study-on-the-effectiveness-of-the-research-experience- for-undergraduates-reu-program-at-missouri-university-of-science-and-technology[13] O. Lawanto, W. Goodridge, and A. Iqbal, “Virtual REU Program: Engineering Education Research,” presented at the ASEE Annual Conference & Exposition, Minneapolis, MN, 2022.[14] S. Zappe, A. Huang-Saad, N. Duval-Couetil, and D. Simmons, “Teaching for Creativity, Entrepreneurship, and Leadership in Engineering,” in International Handbook of Engineering Education Research, 1st ed., 2023a, pp. 433
time to ensure the curriculum continues to meet the program goals and values.Clearly defined curricular objectives and concrete data visualizations may be precursors to thewholescale curricular product of this redesign. Small successes like continued faculty investmentand diverse faculty participation may be key indicators of progress in a complex, protracted,collaborative process. By prioritizing equitable participation and partnering with institutionalsupport, we utilize the very strategies for success that we encourage for our students.References: 1. P Bhattacharya (2008). Ethical issues in engineering education controlling innovation and technology. 2008 American Society of Engineering Education Annual Conference 2. WR Bowen
students about key medical and engineering technologies. This experience awakened a love of instructing and curricular design, which guides his current research studying the impact of technologies and curricular design on students and medical professionals.Dr. Ali Ansari, University of Illinois Urbana-Champaign Ali Ansari is a Teaching Assistant Professor at the University of Illinois at Urbana-Champaign. He holds a Masters and Ph.D in Bioengineering from the University of Illinois at Urbana-Champaign, and graduated from Southern Methodist University with a degree in Electrical Engineering. Ali has been teaching for the past two years at Bucknell University in both the Biomedical Engineering and Electrical and
Journal of Emerging Technologies in Learning (iJET), 16(24), 273-279.12. Mohagheghi, S. (2020, June). A pedagogical approach for developing an entrepreneurial mindset in engineering students. In 2020 ASEE Virtual Annual Conference Content Access.13. Johnson, E., Budnik, M., & Tougaw, D. (2009, June). Integrating Entrepreneurship Throughout an Electrical and Computer Engineering Curriculum. In 2009 Annual Conference & Exposition (pp. 14-757).14. Sarkar, D. (2020, July). Engineering the Future–Communicating Across Borders Through Elevator Pitches. In 2020 First-Year Engineering Experience.15. Condon, M. & Ruth-Sahd, L. (2013). Responding to introverted and shy students: Best practice guidelines for educators and advisors
was a postdoctoral fellow at Advanced Technologies and Regenerative Medicine, LLC. She received her doctoral degree in Biomedical Engineering from Tufts University, M.S. degree from Syracuse University, and B.S. degree from Cornell University. ©American Society for Engineering Education, 2024 Work in Progress: Promoting Equitable Team Dynamics in a Senior Biomedical Engineering Design CourseIntroductionTeam-based engineering design projects are common mechanisms to promote hands-onengagement with the engineering design process. Team-based projects are often implemented inboth introductory and senior level courses in the undergraduate engineering curriculum.Navigating the complex team
. One of my greatest sources of satisfaction lies in leveraging my knowledge and skills to mentor undergraduate students, guiding them in the refinement of their research and professional capabilities. I take immense pride in fostering an inclusive and collaborative environment where students can thrive, encouraging their academic growth and contributing to the broader community of biomedical engineering scholars.Mr. Enrique Alvarez Vazquez, North Dakota State University Enrique is an experienced Systems Engineer with a demonstrated history of working in the electrical and electronic manufacturing field. Highly skilled in Embedded Devices, Software Engineering, and Electronics. He is a strong information technology
Paper ID #44106Board 9: Work in Progress: Collaborative Learning to Develop LaboratoryModules that Support Knowledge Gain and Professional Development in aBiomedical Engineering Graduate CourseDr. Marcia Pool, University of Illinois Urbana-Champaign Dr. Marcia (”Marci”) Pool is the Assistant Director for Education at the Cancer Center at Illinois and a Teaching Associate Professor in Bioengineering. She holds a Ph.D. in Biomedical Engineering, has served for sixteen years as teaching faculty/staff in biomedical/bioengineering and nine years in departmental/institute educational administration, and is an ABET program evaluator for
education, including a more comprehensive perspective on careeroptions, stronger collaboration skills, and improved problem-solving abilities [2, 14].Neuroengineering is an interdisciplinary field that applies engineering techniques to understand,repair, or enhance neural systems [15]. Brain-computer interfaces facilitate brain-devicecommunication, helping restore lost sensory functions [16]. Neurostimulation devices activatespecific nerves/brain areas, aiding patients with conditions like epilepsy or Parkinson's disease[17-18]. Neuroimaging allows for deep study of brain structure/function [19]. Given the potentialof such neuroengineering technologies, it is critical for Biomedical Engineering (BME) curriculato incorporate its study.In addition to
Paper ID #37241Board 14: Work in Progress: Co-creation of Teaching Team Competenciesand ValuesDr. Jennifer L. Leight, The Ohio State UniversityLarry HurtubiseDr. Tanya M. Nocera, The Ohio State University Tanya M. Nocera, PhD, is an Associate Professor of Practice and Director of Undergraduate Education in Biomedical Engineering at The Ohio State University. She is focused on developing, teaching, and assessing upper-level Biomedical Engineering laboratory ©American Society for Engineering Education, 2023 Work in Progress: Co-creation of biomedical engineering teaching team
Paper ID #38648Board 8: WIP: Proposing a Novel Nested-Team Approach for a BiomedicalEngineering Capstone Design ProjectDr. Alexis Ortiz-Rosario, The Ohio State University Alexis Ortiz-Rosario is an associate professor of practice in the department of biomedical engineering at The Ohio State University. He holds a B.S. in industrial engineering from the University of Puerto Rico Mayag¨uez, and an M.S. and Ph.D. in biomedical engineering from The Ohio State University. ©American Society for Engineering Education, 2023Work in Progress: Proposing a Novel Nested-Team Approach for a Biomedical
Paper ID #43848Board 19: Work in Progress: Towards Self-reported Student Usage of AI toDirect Curriculum in Technical Communication CoursesKavon Karrobi, Boston University Kavon Karrobi is a Lecturer in the Department of Biomedical Engineering, as well as the Manager of the Bioengineering Technology & Entrepreneurship Center (BTEC) at Boston University. As a Lecturer in BME, Kavon teaches and mentors students in courses on biomedical measurements, analysis, and instrumentation. As Manager of BTEC, Kavon provides guidance, training, and mentorship of student projects that use BTEC ranging from student-initiated
Paper ID #43339Board 14: Work in Progress: Exploring the Integration of Bio-Inspired DesignInventions in Biomedical EngineeringEisa A. Khawaja, Alpharetta High School Eisa Khawaja is currently a senior at Alpharetta High School in Alpharetta, Georgia. He plans to pursue a degree in mechanical engineering. He is also interested in Artificial Intelligence and participated in an AI Scholars summer program.Dr. Hoda Ehsan, The Hill School Hoda is Chair for Engineering and Computer Science Department and the Director of Quadrivium Design and Engineering at The Hill School. She holds a Ph.D in Engineering Education from Purdue
Department of Biomedical Engineering at the Univ. of North Carolina at Chapel Hill and North Carolina State University. ©American Society for Engineering Education, 2024 Work in Progress: Understanding Student Perceptions and Use of Generative Artificial Intelligence for Technical WritingOpen generative artificial intelligence’s (AI’s) ability to craft human-like text concerns educatorswho fear students will complete assignments without meeting course objectives. Currently, AIdetection is unreliable, adding to educators’ concerns. While these fears are valid, we believe thebest way forward is to teach students how to use this powerful technology ethically andeffectively. Best practices for using AI
Paper ID #42144Measuring the Pedagogical Impact on Undergraduate Students through Frequent,Low-Stakes Pre- and Post-Lecture Self-AssessmentsDr. Reem Khojah, University of California, San Diego Reem Khojah serves as an assistant teaching professor in the Shu Chien-Gene Lay Department of Bioengineering at the University of California, San Diego. With experience in instructing bioengineering at introductory and graduate levels, she actively contributes to enhancing accessibility to research tools for undergraduate research experiences. Her primary focus is on optimizing engineering education through data-driven pre-and post
challenges. A fundamental aspect of this preparation lies in programming proficiency,which serves as a vital tool for analyzing data, simulating systems, and developing solutionsacross various biomedical engineering domains [1]. Much discussion has been had aroundwhich programming language best prepares students for success in the biomedical engineeringworkforce.In recent years, the programming landscape within BME education has witnessed a shift,mirroring broader trends in the medical technology and biotechnology industry [2].. MATLAB,long regarded as a staple in biomedical engineering classrooms for its robust numericalcomputation capabilities and user-friendly interface, has begun to share the spotlight withPython, a versatile and increasingly
Paper ID #37928Board 18: Work in Progress: Implementation of a Junior-level BiomedicalEngineering Design Course Focused on the Manufacturing of ElectrospunNanofibers.Dr. Christian Poblete Rivera, University of Texas at Dallas Christian earned a B.Sc. in biomedical engineering from Purdue University (West Lafayette, IN, USA) in 2012. He went to go on and received a Ph.D. in Biomedical Engineering from the Georgia Institute of Technology (Atlanta, GA, USA) in joint program with Emory University and Peking University in 2019. Currently, Christian is an Assistant Professor of Instruction at the University of Texas at Dallas
,” Commun. Teach., vol. 22, no. 4, pp. 116–129, Oct. 2008, doi: 10.1080/17404620802382680.[10] J. Gilmore, M. A. Maher, D. F. Feldon, and B. Timmerman, “Exploration of factors related to the development of science, technology, engineering, and mathematics graduate teaching assistants’ teaching orientations,” Stud. High. Educ., vol. 39, no. 10, pp. 1910–1928, Nov. 2014, doi: 10.1080/03075079.2013.806459.[11] M. Di Benedetti, S. Plumb, and S. B. M. Beck, “Effective use of peer teaching and self-reflection for the pedagogical training of graduate teaching assistants in engineering,” Eur. J. Eng. Educ., pp. 1–16, Apr. 2022, doi: 10.1080/03043797.2022.2054313.[12] J. Agarwal, G. Bucks, and T. J. Murphy, “A Literature
] M. Andersson and M. Weurlander, “Peer review of laboratory reports for engineering students,” European Journal of Engineering Education, vol. 44, no. 3, pp. 417–428, May 2019, doi: 10.1080/03043797.2018.1538322.[26] A. Saterbak and T. Volz, “ Implementing Calibrated Peer Review To Enhance Technical Critiquing Skills In A Bioengineering Laboratory,” in American Society of Engineering Education, Philadelphia, 2008.[27] Canvas LMS, “How do I use peer review assignments in a course?” Accessed: Mar. 31, 2024. [Online]. Available: How do I use peer review assignments in a course?[28] A. Nichols, “Using Calibrated Peer Review As A Teaching Tool For Structural Technology In Architecture,” in American
BSC in Biomedical Engineering from Amirkabir University of Technology (Tehran Polytechnic) and earned a MSC in Biomedical Engineering from University of Tehran. she then earned a MASC and her PhD in Biomedical Engineering from the University of British Columbia. she is currently a postdoctoral research associate at Michigan State University way to focus on engineering education research and gamification to enhance students learning and engagement.Dr. Elizabeth Mays, University of Michigan BSE- Biomedical Engineering, University of Michigan, Ann Arbor, MI MSE- Biomedical Engineering, University of Michigan, Ann Arbor, MI PhD- Biomedical Engineering, Wayne State University, Detroit, MI Post-Doc for Engineering
School of Biomedical Engineering (BME), Cornell university. She is an interdisciplinary scientist with expertise in biochemistry, molecular biology, and genomics. Dr. Saikia completed her PhD at the University of Chicago, where she developed quantitative and high throughput biochemical assays to analyze RNA modification levels in biological systems. Her work was supported by a fellowship from the Burroughs-Wellcome Trust. Following her PhD, Dr. Saikia conducted postdoctoral research at Case Western Reserve University and Cornell University. Dr. Saikia used single cell RNA sequencing technology to study human immune cell function, as well as human pancreatic beta cell pathology that can lead to diabetes. At Cornell BME
Paper ID #42474Board 12: Work in Progress: Enhancing Student Engagement and Interest inSTEM Education through Game-Based Learning Techniques in Bioengineeringand Electrical Engineering Core Curricula and How to Create ThemDr. Ali Ansari, University of Illinois Urbana-Champaign Ali Ansari is a Teaching Assistant Professor at the University of Illinois at Urbana-Champaign. He holds a Masters and Ph.D in Bioengineering from the University of Illinois at Urbana-Champaign, and graduated from Southern Methodist University with a degree in Electrical Engineering. Ali has been teaching for the past two years at Bucknell University in
: equitable use;flexibility in use; simple and intuitive use; availability of information; tolerance for error; lowphysical effort; size and space for approach and use; and aesthetic and minimalist design [8].Biodesign is a method of training future health technology innovators that was founded at StanfordUniversity [9]. This approach engages medicine, engineering, and business in a curriculum thatchallenges participants to identify (needs finding and screening), invent (concept generation andscreening), and implement (strategy development and business planning) [10]. A recentlydeveloped diversity, equity, inclusion, and justice (DEIJ) toolkit for the Biodesign process providescurriculum developers and instructors with information on diverse team
Paper ID #38474Work In Progress: ”Flash-Labs” as a Tool for Promoting Engagement andLearning in Signals and Systems for Biomedical Engineering CourseDr. Uri Feldman, Wentworth Institute Uri Feldman is an Assistant Professor of Biomedical Engineering in the School of Engineering at Went- worth Institute of Technology in Boston. He received a Ph.D. from the Massachusetts Institute of Tech- nology’s Media Lab, a B.S. in Electrical Engineering from Case Western Reserve University in Cleveland, and an M.S. in Electrical Engineering from University of Illinois at Urbana Champaign. As a Postdoctoral Fellow at Harvard Medical
13485:2016 Quality Management Systems. Similar to many institutions,incorporation of this standard into the curriculum has fulfilled the ABET requirement that aculminating major engineering design experience incorporates appropriate engineering standardsand multiple constraints [1]. Indeed, a large proportion of our students pursuing industry jobsupon graduation find roles as Quality Engineers utilizing the knowledge from this course andstandard. While ISO 13485 is of the utmost importance for our students entering the medicaldevice industry, it is also a relatively poor example of a consensus standard to incorporate intothe technical design or assessment of a new technology. Further, a 2010 survey of medicaldevice manufacturers performed by