Paper ID #37295Introduction of a Virtual Reality Laboratory in a Tissue EngineeringCourseDeborah Moyaki, University of Georgia Deborah Moyaki is a doctoral student in the Engineering Education and Transformative Practice program at the University of Georgia. She holds a bachelor’s degree in Educational Technology and is excited about the possibilities technology offers to the learning experience beyond the formal classroom setting. Her research focuses on improving the educational experience of engineering students using virtual reality labs and other emerging technologies.Dr. Dominik May, University of Wuppertal Dr
Paper ID #42005Board #14A: Work in Progress: Integrating Information and Data LiteracySkills into Biomedical Engineering Laboratory CoursesMr. Alexander James Carroll, Vanderbilt University Alex Carroll, MSLS, AHIP, is the Associate Director of the Science and Engineering Library (SEL) at Vanderbilt University. Alex leads the SEL’s liaison program, designing and delivering services to support the research enterprise and the teaching mission of the School of Engineering and STEM academic units within the College of Arts and Science. He received his MSLS degree from the University of North Carolina at Chapel Hill’s School of
Paper ID #38280Work in Progress: Can In-Class Peer Reviews of Written AssignmentsImprove Problem Solving and Scientific Writing in a Standard-Based,Sophomore Laboratory Course?Dr. Casey Jane Ankeny, Northwestern University Casey J. Ankeny, PhD is an Associate Professor of Instruction at Northwestern University. Casey received her bachelor’s degree in Biomedical Engineering from the University of Virginia and her doctorate degree in Biomedical Engineering from Georgia Institute of Technology and Emory University where she studied the role of shear stress in aortic valve disease. Currently, she is investigating equitable
affiliations in several departments across campus (Primary aˆ C” Bioengineering: Affiliated - Electrical andH. Rex Gaskins, University of Illinois Urbana-Champaign ©American Society for Engineering Education, 2024 Work in Progress: Collaborative learning to develop laboratory modules in a bioengineering graduate courseIntroductionThe National Institute of Biomedical Imaging and Bioengineering’s (NIBIB) Ruth L. KirschsteinNational Research Service Award (NRSA) Institutional Research Training Grants (T32) aredesigned to prepare predoctoral and postdoctoral trainees for research careers in fields ofbiomedical imaging, bioengineering, and health
themanufacturing process which can produce the drug at sufficient quantity and quality to use as apharmaceutical product. Both research and development rely heavily on using laboratoryexperiments to optimize the drug design and the manufacturing process. Therefore, the courseactivities were designed to build students’ R&D skills including designing experiments,developing laboratory protocols, analyzing data, optimizing a process, and making decisionsbased on data.Incorporation of experiential learning-focused activities into engineering courses is well-documented in the literature. McKenna et al. developed industry relevant classroom activities atNorthwestern including both hands-on experiments and team experiences [1]. Ripoll et al.focused on
courses are developed and proposed in the senior level to justify the concentration.Career for BMETGraduates with a degree in B.S. in Engineering Technology – Biomedical Engineering Technology (BMET)concentration will typically work in different facilities such as Hospitals, Clinics, Urgent Care, Pharmaceuticals,Insurance, Bioinstrumentation Industry/ Companies, Private Engineering Firms, Research Laboratories, andUniversities & Colleges, under following titles: Clinical Engineering Technician, Clinical EngineeringTechnologist, Biomedical Engineering Technician, Biomedical Engineering Technologist, Biomedical EquipmentTechnician, Laboratory Equipment specialist, Radiological Equipment Specialist, Manufacturing Engineer -biomedical device
inclusive, reflective teaching practices on problem solving proficiencyMotivationDevelopment and implementation of inclusive teaching practices is an important educationalmovement [1]. For four years, we worked to implement three inclusive practices: standards-based grading with reflection [2], [3], co-created assessment [3], [4], [5], and peer review [2] ofwritten deliverables in a sophomore-level experimental design laboratory and lecture course.This work focuses on peer review, though it utilizes the former two practices in doing so.Briefly, standards-based grading (SBG) is a formative assessment approach that allows fortracking of objective proficiency throughout the curriculum and allows for just-in-time
future of modern medical treatment. Advances in tissueengineering, computational protein design, and high-throughput bioanalyticaltechniques across academia and industry motivate the need to develop curriculathat provides opportunities for students to interact and design early in theirundergraduate careers. To meet this need, we created two new junior-level courses:Molecular Engineering (BME305L) and Cellular Engineering (BME306L) thatwere offered in the Fall and Spring of 2022, respectively. We have emphasizedstudent-centered experimental and laboratory practice as the backbone of thesecourses to prepare students for authentic research experiences in any industry.Molecular Engineering integrates computational and experimental learningoutcomes
experiment, and ethical considerations.Traditional biomaterials courses often lack hands-on experiences that bridgetheoretical knowledge with practical application, limiting students' ability to graspthe real-world implications of their studies. To address this gap, we implemented amultifaceted pedagogical strategy that integrates active learning principles,laboratory experimentation, and ethical discourse.The active learning modules were centered around case studies of biomedicaldevices and a cytotoxicity testing experiment. The case studies approach was tohave the students address a given set of questions about material selection, devicedesign and testing of a medical device with recommendations for improvement.Active learning activities were
author: mselsaad@uark.eduIntroductionImmersive virtual reality (VR) based laboratory demonstrations have been gaining traction inSTEM education. VR may serve as a valuable tool not just for remote learning but also tobroaden outreach, reduce waste, enhance safety, generate increased interest, and modernizeeducation. VR holds great potential to complement existing education strategies [1, 2]. However,to ensure better utilization of VR-based education, it is pivotal to perform optimizations of VRimplementation, in-depth analyses of advantages and trade-offs of the technology, andassessment of receptivity of modern techniques in STEM education [1, 3, 4].There have been several studies that tested the effectiveness of VR in the educational field
laboratories [10]. In summerbased clinical immersion programs, students must apply and compete against their peers to beselected. This is a limiting factor especially for large and fast-growing programs. Summerimmersion programs are usually short in their duration (2 weeks up to 10 weeks) [1-9], therefore,provide limited exposure to clinical setting and personal. Offering semester-based clinicalimmersion programs poses another set of challenges. Universities must establish hospitalaffiliation agreements and recruit clinical participants to supervise students. The number ofclinical participants needed to supervise students increases as the number of students increases.Field trips and visits within a course also require maintaining a long-term clinical
Paper ID #39458Board 15: Work in Progress: Cultivating Growth of Systems Thinking Habitof Mind over a Five Course Fundamental SequenceDr. Lisa Weeks, University of Maine Lisa Weeks is a lecturer of Biomedical Enginering in the Department of Chemical and Biomedical En- gineering at the University of Maine since 2017. She teaches several of the core fundamental courses including hands on laboratory courses.Prof. Karissa B Tilbury ©American Society for Engineering Education, 2023 Work in Progress: Cultivating Growth of Systems Thinking Habits of Mind over a Five Course Fundamental
Paper ID #37014Work In Progress: Professional Development Through High-Impact Experi-encesDr. Charles Patrick Jr., Texas A&M University Dr. Charles Patrick Jr. currently serves as a Professor of Practice in the Department of Biomedical Engi- neering at Texas A&M University. He serves as Director of the Undergraduate Program and administers the Ideas to Innovation Engineering Education Excellence Laboratory. He is involved in Texas A&M’s Center for Teaching Excellence, the Institute for Engineering Education and Innovation, and the College of Engineering’s Faculty Engineering Education Group. His research focuses
approach may leave students unsure about potential careers [3], since itoften does not include integrating innovation, ideation, and developing new products, which arecrucial areas within the cutting-edge BME field [1], [4].One way to improve BME students’ confidence in their career preparation has been to introducethem to undergraduate research in BME-specific areas, such as research experience forundergraduates (REU) programs [5], [6], [7], as a way to encourage them to pursue graduate-level research and apply their curricular knowledge to practice [2], [8]. Generally, REUprograms have encouraged development of communication skills through both oral presentationand writing technical research, laboratory and computer skills, and collaboration
applications [6] [7]. This allows laboratories tocontain embedded text, with images, and tables to be integrated with coding boxes allowingstudents to step through programming assignments. An example of such a notebook is includedin the Appendix of this paper. This first conversion exercise was performed entirely by theinstructor of record with no Python background to judge the difficulty involved in making theplanned departmental wide conversion the subsequent year. This course was selected to be agood test case as the course included 10 significant programming exercises and onecomprehensive programming project and is largely seen as the foundational computationalclass for BME students following their initial introduction to programming class taken
Implementation: The foundation for this new design course was based on previousimplementations of electrospinning in senior design projects [13, 14], educational modules [15,16, 17], and research courses [18, 19, 20]. However, the novelty of this course was its goal ofcontrolling ambient conditions to improve manufacturing electrospun fibers. Specifically, studentsin teams of 4-5 were tasked to design an electrospinning system that could monitor temperature orhumidity and regulate the appropriate ambient parameter to stay within an ideal range.The course was designed to be a required 2-credit hour course that would be held once a weekduring a standard 3-hour laboratory period with ~20 students (5 teams). The course was led by oneprimary instructor and
includes development of biomaterials for regenerative engineering of craniofacial tissues. Her engineering education work has been published in biomedical engineering and biomaterials journals for the past few years and currently heavily interested in bridging the classroom and laboratory using her courses.Ms. Jillian Irene Linder, South Dakota School of Mines and Technology Jillian Linder is a Master’s Student at South Dakota School of Mines and Technology. Jillian has worked as a Teaching Assistant in the Biomedical Engineering Department for two semesters under Dr. Ozdemir. She also has worked with Middle Schoolers at Mission Middle School in Bellevue, Nebraska, to run a makerspace classroom during summer school to
instruction in chemical engineering, Can J Chem Eng. (2021). https://doi.org/10.1002/cjce.24136.[3] R. Vaez Ghaemi, V.G. Yadav, Implementation of Project -Based Learning in Second -Year Cellular Biophysics Course and Students ’ Perception of The Value of The Practice, in: 2019 Canadian Engineering Education Association (CEEA-ACEG19), 2019: pp. 1–6.[4] G. Lam, N. Gill, R. Ghaemi, SEMI-STRUCTURED DESIGN AND PROBLEM-BASED EXPERIENTIAL LEARNING IN A FIRST-YEAR BIOMEDICAL ENGINEERING LABORATORY COURSE, Proceedings of the Canadian Engineering Education Association (CEEA). (2020). https://doi.org/10.24908/pceea.vi0.14132.[5] J.E. Caldwell, Clickers in the Large Classroom: Current Research and Best-Practice Tips
Paper ID #37241Board 14: Work in Progress: Co-creation of Teaching Team Competenciesand ValuesDr. Jennifer L. Leight, The Ohio State UniversityLarry HurtubiseDr. Tanya M. Nocera, The Ohio State University Tanya M. Nocera, PhD, is an Associate Professor of Practice and Director of Undergraduate Education in Biomedical Engineering at The Ohio State University. She is focused on developing, teaching, and assessing upper-level Biomedical Engineering laboratory ©American Society for Engineering Education, 2023 Work in Progress: Co-creation of biomedical engineering teaching team
projects,which they are conducting concurrently. While not definitive, these preliminary observationsindicate that Flash-labs seem to be effective. Further data analysis would confirm this.Conclusions and Future WorkThe next stage of this research involves analysis of the thematic coding elements compiled fromdata sets collected from end-of-semester course evaluations. While Flash-labs may not be acomplete replacement for a full laboratory class component, it does appear that they helpstudents relate to and internalize core fundamental concepts within the compressed time frameand are eager to collaborate with each other. Another extension of the analysis may involveconducting photovoice analysis, focusing on themes extracted from the student DSP
Keble, New, University, and Harris Manchester Colleges, was College Lecturer for New College and a Senior College Lecturer in Engineering Science for Keble College. He taught approximately 75% of the core degree topics, as well as human physiological measurement laboratory classes for medical students. ©American Society for Engineering Education, 2023 Work-In-Progress: Improving Student-Instructor Relationships and Help- Seeking through Office HoursIntroductionStrong relationships between students and their instructors have an undisputed link to positivestudent outcomes such as retention, motivation, sense of belonging, and academic achievement[1]. These observations are
Transferable career skills, trajectories, open Q&A discussion2:30PM Intro to Research: Ethical Laboratory and Data Practices - Dr. Hogan3:15 PM Intro to Research: How to Keep a Lab Notebook - Dr. Ishan Goswami4:00 PM Explore Riverside: Hike to Mt. Rubidoux6:00 PM Dinner | Mission Inn Restaurant7:30 PM Social | Organized on site5Appendix II. Evaluation SurveySection 1: Please rate the following experiences Excellent Good Fair Poor Very Poor Overall, I would rate the instructors as: DAY 1: Being a Researcher DAY 1: Welcome to ATP-Bio and Center Overview DAY 1: ATP-Bio Research Overviews Part I DAY 1: ATP-Bio Research Overviews Part
of Biomedical Engineering. I am involved in mentoring students in both the laboratory and in the classroom and have research interests in peer feedback, team dynamics, and incorporating more translatable skills to my classes. Currently, I teach senior capstone, research and experimental design, and medical device design. ©American Society for Engineering Education, 2024 Work in Progress: Towards Self-reported Student Usage of AI to Direct Curriculum in Technical Communication Courses1. IntroductionThe use of AI by students in biomedical engineering courses has rapidly grown in the past year[1]. Courses that prioritize critical thinking and technical writing have seen students relying
. C. Jangraw, M. B. Bouchard, and M. E. Downs, “Bioinstrumentation: A project-based engineering course,” IEEE Transactions on Education, vol. 59, no. 1, pp. 52–58, 2016.[11] J. Long, E. Dragich, and A. Saterbak, “Problem-based learning impacts students’ reported learning and confidence in an undergraduate biomedical engineering course,” Biomedical Engineering Education, vol. 2, no. 2, pp. 209–232, 2022.[12] G. Lam, N. Gill, and R. Ghaemi, “Semi-structured design and problem-based experiential learning in a first-year biomedical engineering laboratory course,” Proceedings of the Canadian engineering education association (CEEA), 2020.
large public state university and taking part in the same researchproject. The internship was an 8-week program in the Biomedical Engineering (BME)Department funded by the Massachusetts Life Science Center (MLSC). All three students wereworking in the same lab co-hosted and mentored by the two laboratory Principal Investigators, aswell as undergraduate and graduate students in the lab. In-depth interviews with the three internsand their parents/caregivers were conducted and analyzed to understand parental relationships,mentorship relationships, and components of the home environment in developing STEMidentity and interest. Faculty mentors were also interviewed and provided perspectives on skillsets and confidence coming into the internship and
Colombia, working with undergraduate and graduate students. My doctoral research focused on electronic devices for recording and stimulation of Obstructive Sleep Apnea, obtaining a Cum Laude distinction and experience in neuromodulation. I am currently a postdoctoral fellow at the University of Texas at Austin working on the development of portable focused ultrasound neurostimulation technologies in the laboratory of Dr. Huiliang Wang, an expert in optogenetics and sonogenetics.Prof. Huiliang Wang, University of Texas at Austin Huiliang (Evan) Wang is an Assistant professor at the Biomedical Engineering department at the University of Texas at Austin (UT Austin). His research is on neuro-engineering technologies
. Open Journal of Nursing, 3(7), 503–515.16. Jaksic, N. I. (2021, July), Pair-to-Pair Peer Learning: Comparative Analysis of Face-to-Face and Online Laboratory Experiences Paper presented at 2021 ASEE Virtual Annual Conference Content Access, Virtual Conference. https://peer.asee.org/37556
? Investigating relationships between teaching assistants and student outcomes in undergraduate science laboratory classes,” J. Res. Sci. Teach., vol. 54, no. 4, pp. 463–492, Apr. 2017, doi: https://doi.org/10.1002/tea.21373.[4] C. Kepple and K. Coble, “Investigating potential influences of graduate teaching assistants on students’ sense of belonging in introductory physics labs,” PERC Proc., pp. 282–287, 2019.[5] S. M. Love Stowell et al., “Transforming Graduate Training in STEM Education,” Bull. Ecol. Soc. Am., vol. 96, no. 2, pp. 317–323, Apr. 2015, doi: https://doi.org/10.1890/0012-9623-96.2.317.[6] N. M. Trautmann and M. E. Krasny, “Integrating Teaching and Research: A New Model for Graduate Education
experiences to enhance students’implementation of design methodology,” presented at the ASEE Annual Conference and Exposition,Conference Proceedings, 2015.[8] J. W. Creswell and C. N. Poth, Qualitative Inquiry and Research Design: Choosing Among FiveApproaches. SAGE Publications, 2016.[9] D. P. Crismond and R. S. Adams, “The Informed Design Teaching and Learning Matrix,” Journal ofEngineering Education, vol. 101, no. 4, pp. 738–797, 2012, doi: 10.1002/j.2168-9830.2012.tb01127.x.[10] C. Cvetkovic, S. Lindley, H. M. Golecki, and R. Krencik, “Biofabrication of Neural Organoids: AnExperiential Learning Approach for Instructional Laboratories,” Biomed Eng Education, Apr. 2024, doi:https://doi.org/10.1007/s43683-024-00145-7.[11] D. Gatchell and R