Paper ID #22840Effective Teamwork Dynamics in a Unit Operations Laboratory CourseDr. Erick S. Vasquez, University of Dayton Erick S. Vasquez is an Assistant Professor in the Department of Chemical and Materials Engineering at the University of Dayton. Dr. Vasquez earned his B.Sc. degree in chemical engineering at Universidad Centroamericana Jose Simeon Canas (UCA) in El Salvador. He received his M.Sc. degree in chemi- cal engineering from Clemson University and his Ph.D. degree in chemical engineering from Mississippi State University. His research focuses on the development and applications of nanomaterials in separation
Paper ID #32851Innovative Use of Technologies to Teach Chemical Engineering CoreClasses and Laboratories During the Covid-19 Pandemic at an HBCUDr. Rupak Dua, Hampton University Dr. Rupak Dua graduated with a Ph.D. in 2014 in Biomedical Engineering with a specialization in Tis- sue Engineering and Biomaterials from Florida International University located in Miami, FL. Dr. Dua worked for two years as a Postdoctoral Fellow at the Institute of Orthopedic Research and Education housed in Texas Medical Center - the world’s largest medical center - located in Houston, TX. Before joining Hampton University in the Department of
Paper ID #29057The Design and Impact of a Combined Makerspace, Wet Lab, andInstructional Design Studio for Chemical Engineering CurriculumProf. Anthony Butterfield, University of Utah Anthony Butterfield is an Associate Professor (Lecturer) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory, capstone laboratory, first year design laboratory, and the introduction to chemical engineering. His research interests focus
inharm to employees, the environment and in some cases the public in highly publicized eventssuch as Bhopal and Deepwater Horizons. Risks are tolerated when hazards are controlled; whenan incident occurs, the risk becomes intolerable. The public reacts negatively to events involvingemployee deaths, environmental damage or threats to their homes.Incidents often result in negative publicity and a call for change. For example, a runawayreaction led to an explosion at a company called T2 Laboratories in Jacksonville, FL inDecember 2007.3 The blast killed four people. Another thirty two people were injured; fourteenrequired treatment at a local hospital. In response, the U.S. Chemical Safety and HazardInvestigation Board (CSB) called for improvements
A Pharmacokinetic Simulation-Based Module to Introduce Mass Balances and Chemical Engineering Design Concepts to Engineering FreshmenIntroductionOften the opportunities for freshmen engineering students to be exposed to chemical engineeringare limited. Introduction to chemical engineering is typically a sophomore level course.Freshman general engineering courses come in a variety of forms from college orientationcourses to lectures on basics of design and safety to project-based laboratory or designexperiences. A recent survey of 50 chemical engineering undergraduate programs showed that6% of those programs offered engineering laboratory experiences for freshmen through generalengineering courses and 4
review of the possible benefitsderived from the literature. Student responses to the research experiences were largely positive;91% of students indicated that they experienced gains from completing the research experience 4.They also identified a number of benefits to students, including personal and professional gains,gains in communications skills, gains in various research skills (e.g., laboratory/field skills, workorganization skills, etc.), clarification or confirmation of educational and career plans and goals,and improved career or graduate school preparation 4. These identified benefits aligned largely Page 26.1243.3with those
, and also Educational Innovation to virtual graduate students at Tecnol´ogico de Monterrey. She has experience working in projects with different local industries. Recently she has been working with innovation and technology for engineering education (remote Laboratories, virtual laboratories, flipped classroom, active learning and PBL among others).Dr. Pablo Moreno Ram´ırez, Universidad Aut´onoma Chapingo Born in Chile in 1942. Get graduation as Agronomist at the Univrsidad de Chile in 1966. In 1969 went to Cornell University to study Agricutural Economics. Get Master degree in 1972 and started Ph.D program at the same university, In 1974 went to M´exico to be professor at Universidad Aut´onoma Chapingo where I get
Engineering Department at the Uni- versity of New Mexico. The research in her lab is focused on understanding the dynamics and structures of macromolecular assemblies including proteins, polymers, and lipid membranes. Undergraduates, grad- uate students, and postdoctoral scholars are trained in a multidisciplinary environment, utilizing modern methodologies to address important problems at the interface between chemistry, physics, engineering, and biology preparing the trainees for careers in academe, national laboratories, and industry. In addition to research, she devotes significant time developing and implementing effective pedagogical approaches in her teaching of undergraduate courses to train engineers who are
laboratory- andsimulation-based research, and foster the development of research communication skills. A moredetailed description of the REU program structure, objectives, and elements is included in priorwork evaluating initial student outcomes from the program 1.The current study presents a follow-up, second-year evaluation of a research experiences forundergraduates (REU) program that is currently in progress, funded by the National ScienceFoundation and focused on the integration of biology and materials. As in the first year of theprogram, participating students completed measures of research-based skills and experience,likelihood of pursuing graduate school, and openness to collaborating with others both prior toand after completion of the 10
college is for the instructor to talk informally with groups duringa three hour design laboratory period that is held once per week. However, the course instructorsin chemical engineering have selected the dedicated meeting approach described above ratherthan this alternate approach, because it guarantees a completely devoted time period for eachteam with the instructor. Thus, the practice of a regular checkup espoused by Davis [2] isaccomplished. In the laboratory checkup scenario described above, not all teams may getindividual time with the instructor each week. The preferred approach is more time consumingfor the instructors, however it is worthwhile, since it better ensures the success of all teams ineach course offering. The effectiveness
Paper ID #22785Citizen Scientists Engagement in Air Quality MeasurementsProf. Anthony Butterfield, University of Utah Anthony Butterfield is an Assistant Professor (Lecturing) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory and freshman design laboratory. His research interests focus on undergraduate education, targeted drug delivery, photobioreactor design, and instrumentation.Katrina My Quyen Le, AMES High School
well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone De- sign courses. She is associated with several professional organizations including the American Institute of Chemical Engineers (AIChE) and American Society of Chemical Engineering Education (ASEE) where she adopts and contributes to innovative pedagogical methods aimed at improving student learning and retention.Dr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and assistant professor at the University of New Mexico in the Organization, Information & Learning Sciences program
. He has taught a variety of courses in the ChE department and currently focuses on the Unit Op- erations Laboratory, Mass and Energy Balances, and Separations. He completed the National Effective Teaching Institute course (NETI-1) in June, 2016. Dr. Clay is married to Dr. Kristy Clay, a veterinarian, and has three children, Luke (15), Natalie (15), and Meredith (12). c American Society for Engineering Education, 2017 Integration of Industrially Relevant Examples in ChE Courses Energy Balance on an e-Cigarette DeviceAbstractIdentifying industrially relevant and/or real-world examples is an excellent technique to enhancethe
(accessed April 5, 2016).11. McGee, S.; Davis, V. A.: Auburn Abalone Msp. Youtube, 2013.12. TAPPI Nanocellulose Video - Rethink Paper. Youtube, 2011.13. In the News - USDA Forest Products Laboratory Nanocellulose Facility Grand Opening. http://umaine.edu/pdc/in-the-news/fpl-nanocellulose-facility-grand-opening/ (accessed June 15, 2014.
Undergraduate Curriculum Com- mittee, as well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone De- sign courses. She is associated with several professional organizations including the American Institute of Chemical Engineers (AIChE) and American Society of Chemical Engineering Education (ASEE) where she adopts and contributes to innovative pedagogical methods aimed at improving student learning and retention.Dr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and assistant professor at the University of New Mexico in the Organization, Information
: REvolutionizing engineering and computer science Departments (IUSE PFE\RED) - Formation of Accomplished Chemical Engineers for Transform- ing Society. She is a member of the CBE department’s ABET and Undergraduate Curriculum Committee, as well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone Design courses. She is associated with several professional organizations including the American Institute of Chemical Engineers (AIChE) and American Society of Chemical Engineering Education (ASEE) where she adopts and contributes to innovative pedagogical methods aimed at improving student learning
electrokinetics, predominantly di- electrophoretic characterizations of cells, and the development of biomedical microdevices. She earned a NSF CAREER award and was nominated for Michigan Professor of the Year in 2014. Research within her Medical micro-Device Engineering Research Laboratory (M.D. – ERL) also inspires the development of Desktop Experiment Modules (DEMos) for use in chemical engineering classrooms or as outreach activi- ties in area schools (see www.mderl.org). Adrienne is currently co-Chair of ASEE’s Diversity Committee and PIC I Chair; she has previously served on WIED, ChED, and NEE leadership teams and contributed to 37 ASEE conference proceedings articles.Dr. Ann Saterbak, Rice UniversityDr. Jennifer Cole
Undergraduate Curriculum Com- mittee, as well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone De- sign courses. She is associated with several professional organizations including the American Institute of Chemical Engineers (AIChE) and American Society of Chemical Engineering Education (ASEE) where she adopts and contributes to innovative pedagogical methods aimed at improving student learning and retention.Victor Law, Program of Organization, Information, and Learning Sciences at University of New Mexico Dr. Victor Law is an Assistant Professor at the University of New Mexico in the