that require them to write extensively, whether that be in industry or graduateschool. Additionally, the Accreditation Board for Engineering and Technology (ABET) lists theability to communicate effectively an expected student outcome of accredited baccalaureateprograms. Because of insufficient writing requirements in undergraduate engineering curricula,however, many engineers are unprepared for the writing-demand necessary to convey their ownideas or understanding of ideas. More rigorous writing practices would not only improve effectivecommunication skills as undergraduate students pursue their education, it can also help studentsdevelop a deeper conceptual foundation of engineering topics. The writing pedagogy of interestfollows a
American Society for Engineering Education, 2018 Effective Teamwork Dynamics in a Unit Operations Laboratory Course1. IntroductionThe Chemical Engineering Unit Operations Laboratory is a unique course that relies heavily on acooperative team effort for successful learning that leads to a compelling laboratoryexperience[1-3]. In this course, team assignments play a critical role in the performance of agroup because every laboratory session involves peer interactions, hands-on experimentationfrom start to finish, data analysis and discussion, and a significant amount of writing time, i.e., aworkload that is intentionally more than one individual is expected to manage. The dauntingworkload for this course should
majors and career fields. The factors that havebeen studied fall into three broad categories: individual attributes(17-20), environmentalconditions(7,21-28), and learning pedagogy(19,23,25,29-31). The academic and career experience forwomen in STEM has been characterized by isolation, a lack of mentors, and a shortage of rolemodels(26). Faculty and peer interactions have substantial influence on the satisfaction andretention of students(2,3,32). Specific faculty influences include the frequency of interaction withfaculty, the quality of teaching by faculty and TAs, and the availability of female faculty and TArole models. Peer interactions affect the classroom climate and influence women’s confidenceand sense of belonging(29). Peer interactions
place students on a higher performance leveland can lead to fading or scaffolded achievement [7].Recent research raises concerns about over-scaffolding learners; while they sometimes performbetter on short-term knowledge gains than peers who are not scaffolded, they also reportedlydevelop negative attitudes toward the subject matter [8]. Instead, providing goals, such as adesign challenge, can better organize their learning. Other forms of scaffolds can also providebenefit. For instance, scaffolds that organize student work on ill-structured problems can supportthem to think about the problem and learn as they do so [9].The design process spans definition of problem, navigation of the scientific literature forbackground, brainstorming multiple
research university in the American Southwest. Students worked in pairs onhomework assignments to support peer learning. We replaced one question from each of the sixhomework assignments with design challenge deliverables. Students worked in subteams on oneof the three algal production phases (i.e., growth, harvest, extraction). They also developedindividual accountability through jigsaw sessions in which they explained their subteam’s workto students from other production phases. They built whole-class consensus through “parley”sessions that involved decision matrices.We describe the design challenge and our study, in which we investigated how a designchallenge threaded through a sophomore course might provide students with a picture ofauthentic
piece of information onthe bottom of the card as shown in Figure 1.They then had to use solely oralcommunication – no drawing or writing – toexplain the symbols on their card and gatherfeedback on what their card was meant torepresent. This meant that they had to listenclosely to their peers to ensure that they weregetting the description of a symbol theyneeded. They also had to be careful in how Figure 1. Sample ROYGBIV game cardthey described their symbol so that it wouldnot be misinterpreted. To get the necessary information to solve their code, students needed tospeak to a lot of different students in the class, not just their peer group as each student was onlyprovided with the one piece of information at the bottom of their card
project management andcommunication, particularly communicating outside of engineering. Overall, the sophomorestended to report similar numbers of team members with each professional skill as the seniors.Whereas the seniors could clearly distinguish between the professional skill areas, thesophomores were not adept at this.To understand the impact of the team asset-mapping activity, we compared the sophomores’scores on items from a peer evaluation conducted twice during the semester. Early in thesemester, students tended to report some difficulty managing conflicts related to team tasks, butby the end of the semester, significantly fewer teams did so.We also describe an asset-based modification we made to the teams in the senior capstone
and his B.S. in chemical engineering with honors from the University of California at Berkeley. Dr. Han has over 25 years of experience in electronic and pho- tonic materials engineering and fabrication. His current research topics include (1) writable/rewritable quantum structures by stress patterning; (2) low-cost, crack-tolerant, advanced metallization for solar cell durability; (3) thin film processing and nanoscale surface corrugation for enhanced light trapping for pho- tovoltaic devices; and (4) microsphere-based manufacturable coatings for radiative cooling. He has close to 70 publications in peer-reviewed journals and over 200 invited/contributed papers at academic insti- tutions, national laboratories
course involve technical communication, team writing, and analysis of thedata collected in lab. While creation of devices and collection of data occurred in the lab spaces,the rest of this work typically occurred outside of lab. As such, it is perhaps no surprise thatmoving from UOL to MIL had no statistically significant impact on student project scores. Whileteam projects were scored higher on average in MIL than in UOL, the p value was only 0.088.Furthermore, it may be worth noting that the same observations could be made for student peerevaluations of their team members. In the test course, students switch teams for each of their sixprojects and they tend to work with almost every peer in their section. Part of the score for theirteam
production, CO2 emissions, and the liquidwaste that the plant produces). This allows the students to have practical experience on sometopics such as thermodynamic cycles, measurements of composition at the site plant, knowingactual equipment of pumps, pipelines, and so on.The paper describes the innovative elements added to the PBL teaching strategy in order toconnect all these issues. It also presents some of the research results, such as the engagementthat is achieved by students, which lead them to the writing and publishing of papers with theirown ideas. We are dealing with a new generation of engineers who are used to seeing, touching,and having first-hand experience more than they did ten years ago. They are highly motivatedwith the things
, 2019 Work In Progress: Best Practices in Teaching a Chemical Process Design Two-course Sequence at a Minority Serving UniversityIntroductionStudents complete their capstone design experience in the Chemical Process Design II and IIIsequence of courses in chemical engineering at Texas A&M University-Kingsville (TAMUK), aHispanic-serving institution (HSI). Three principle objectives of this process design coursesequence are to instruct students in the development of a complete chemical process usingprocess simulators as a primary tool, to complete this project in a team-oriented environment,and to communicate effectively with their peers and instructors. These three principle objectivesare directly related to the ABET student
in real settings; and in creating positive learning and work environments. She has a B.S. inEngineering, an M.BA., and has worked in industry for over 18 years. c American Society for Engineering Education, 2016 Mapping Assets of Diverse Groups for Chemical Engineering Design Problem Framing AbilityAbstractEngineering programs across the US are engaged in efforts to increase the diversity of theirstudent populations. Despite these efforts, students from groups underrepresented in engineeringare still less likely to persist, relative to their peers. One approach taken is adding design earlierin programs, but faculty sometimes doubt that freshmen and sophomore students have thecapacity to
tends to focus more on knowledge acquisition9. It has been shown thatproject-oriented courses increase retention rates10-12, intellectual development13, and increase notonly students’ technical and design knowledge, but also their technical writing and researchskills14. In addition, project-oriented courses expose students to the broader context of engineeringdesign, and students learn best when experiencing the entirety of the content area through real-lifeexamples and working with and learning from their peers6, 15-17.Project-oriented learning and capstone design courses allow for the concurrent teaching of designthrough application and teamwork skills, which are needed for future professional success3,4,18,19.This teaches students the
education. She has published 20 peer-reviewed publications in these areas, and her research has been funded by the NSF, AFRL, and LA-BOR. She also serves as an Associate Editor for the American Control Conference and the Conference on Decision and Control, two premier conferences in the controls community. She is a member of the IEEE, SIAM, and ASEE.Prof. Dexter Cahoy, Louisiana Tech University Dexter Cahoy is an Associate Professor in the College of Engineering and Science at Louisiana Tech University, Ruston, LA. He received his MS in Statistics from University of Alberta, Edmonton, Canada, and his PhD in Statistics from Case Western Reserve University, Cleveland, Ohio. As a professor at Louisiana Tech, he taught