Paper ID #36732Board 49: Project-based learning course co-designed with regionalenterprisesLufan Wang, Florida International University I am an Assistant Teaching Professor at Florida International University.Ruoying ChuDr. Fangzhou Xia, Massachusetts Institute of Technology Fangzhou Xia received the dual bachelor’s degree in mechanical engineering from the University of Michigan, Ann Arbor, MI, USA, and in electrical and computer engineering from Shanghai Jiao Tong University, Shanghai, China, in 2015. He received the S.M. in 2017 and Ph.D. in 2020 both from the mechanical engineering department in Massachusetts Institute of
Paper ID #39685Evaluating Student Project Ranking in an Industry-SponsoredMultidisciplinary Capstone Program to Improve Student Placement andProject ProposalsEdward Latorre, University of Florida Dr. Edward Latorre-Navarro is the Director of the Integrated Product and Process Design (IPPD) program within the Department of Engineering Education at the University of Florida. He joined UF from his pre- vious role as Associate Professor of Computer Science at the University of Puerto Rico at Arecibo. As an educator, he is interested in improving the academic experience based on student engagement with educa- tional goals
Mechanical Engineering and Industrial Engineering Department (MEIE)and Rowan University’s Civil and Environmental Engineering Department. We also present thepartnership projects developed as a part of these workshops at both universities. We believe thatthese collaborations will lead to industry insights in our programs that will map toEntrepreneurially Minded Learning (EML), a pedagogical framework developed by KernEntrepreneurial Engineering Network (KEEN) to promote graduates to become value creatorsfor their organizations. This focuses on developing skills in undergraduate engineering studentssuch that they are poised to create extraordinary value in their future organizations. EML seeksto expand the notion that design is focused on technical
providementoring on specific topics or with teams. The most significant number of corporate volunteersare engaged in the twice-per-semester design reviews. To ensure quality deliverables, theprogram has long hosted design reviews, in which volunteers from industry serve as expertpanelists, listening to the student teams’ presentations and giving feedback and suggestions toimprove the projects and support the students’ professional development. Engaging industry indesign reviews has led to a number of positive outcomes, including translation of the moreengaged design reviewers into volunteer team advisors, closer connection with industry partnersyielding financial sponsorships, and more opportunities for students to engage with potentialemployers. As the
Paper ID #39206Board 50: Unlock the Potential of Industry Partners for EngineeringEducationLt. Col. Erik Backus, Clarkson University Erik C. Backus, PE, is a Professor of Practice at Clarkson University currently pursuing a PhD in Engi- neering Science with a focus in facilities and infrastructure construction decision making. He is currently the Howard E. Lechler Director of the Construction Engineering Management (CEM) program, teach- ing and supporting undergraduate, graduate, and other students and trainees. He has a bevy of exper- tise, experience, and knowledge in instructing project based engineering courses
Paper ID #39983Empowering Trailblazers toward Scalable, Systematized, Research-BasedWorkforce DevelopmentMartha Cervantes, Johns Hopkins University Martha Cervantes is a Mechanical Engineer at the Johns Hopkins University Applied Physics Labora- tory where she works in mechanical design and integration of robotic systems. Additionally, Martha is the project manger of the CIRCUIT Program at JHU/APL, which connects and mentors students from trailblazing backgrounds to STEM careers through science and engineering projects. Martha received her B.S. in Mechanical Engineering from Johns Hopkins University, and she is currently
critical role in sustaining thenation’s economic prosperity, security, and social well-being, engineering practice will bechallenged to shift from traditional problem solving and design skills toward more innovativesolutions imbedded in a complex array of social, environmental, cultural, and ethical issues”[29].Unfortunately, there has been a lack of attention to innovation in engineering education [7].Except for capstone projects in their senior year, engineering students are basically trained thatthere is one answer to each problem. Homework and exam problems all have a single correctsolution. Besides the fact that many real-world problems do not have a single answer, many real-world problems are not as well-defined as they are in the classroom
. His career experiences include industrial consulting and managing an outreach center. His research interests include Distance education qual ©American Society for Engineering Education, 2023 Work in Progress: An Analysis of the Existence of Metrics for University/Industry CollaborationIntroduction:Partnerships between universities and commercial enterprises have become relatively commonand take a variety of forms. From traditional research projects at universities that yield data andknowledge businesses and industries can then use to improve processes and practice, to morespecific training and development programs that focus on building particular skills for
education, project management, and knowledge management. Dr. Alsayyed has a Ph.D. in Industrial engineering, three Masters: (Industrial Engineering, Manufacturing Engineering, and Project Management). Dr. Al- sayyed is a Certified Manufacturing Engineer (CMfgE) since 1997.Dr. Yanjun Yan, Western Carolina University Yanjun Yan is an Associate Professor in Engineering and Technology at Western Carolina University. Her research interests include engineering education, swarm robotics, statistical signal processing, and swarm intelligence. ©American Society for Engineering Education, 2023 All-encompassing Skill Portal for Skills Management and Development Basel Alsayyed
,and professional networking opportunities, while gaining direct access and exposure to over 30technical staff members, including 16 day-of volunteers/mentors, 10 technical talk speakers, and8 gallery walk judges. A majority of the intern participants (over 85%) attended technical talksand gained exposure to cutting edge technologies and relevant topics (including hypersonics,natural disaster response, anti-gravity machines, and 5G networks). Many of these interactionsdirectly informed the students’ project brainstorming sessions and eventual final proposals.Students who responded to the survey stated that they met and interacted with on average three ormore staff outside of technical talks and approximately 46% stated their confidence
(under 1%),only changing from 117 doctorate degree recipients in 2010 to 120 in 2019 [3].NASA Historical Efforts with Tribal Colleges and UniversitiesAccording to Maynard [3], NASA has supported an effort called “Tribal Colleges andUniversities Project (TCUP)” since 2010, as one of various STEM education and outreach grantprograms specifically targeted to support Tribal Colleges and Universities-related initiatives.“The overall goal of the project is to expand opportunities for the nation’s STEM workforcethrough capacity building, infrastructure development, research and engineering experience,outreach, and information exchange” [4]. In 2008, Congress directed NASA to establish a projectthat was focused on climate change education. The Global
, funded by the Department of Defense, with colleagues in Purdue’s College of En- gineering. The project focuses on developing a scalable and sustainable workforce development program for microelectronics that will serve as a model for other workforce development efforts (i.e., artificial intelligence, hypersonics). In this role, she examines organizational and leadership issues that span across an ecosystem of partners within the following areas: defense, government, industry, community colleges, and universities. Dr. Linvill’s research is strategically designed to address organizational challenges and create novel solutions to those challenges. Her work has been presented at national and international conferences and
figure into the commonproblems of recruiting and training a diverse student body in engineering. This paper examinesthe recruitment and retention strategies of a program, embedded within the Electrical andComputer Engineering Department at Texas Tech University, that aims to recruit and retain adiverse scholar cohort. The project entitled “Tech Intrapreneurs Program” is funded by theNational Science Foundation with additional scholarship funding from a prominentsemiconductor company. This program recruits a diverse student body through the departmentaladvisor, outreach to diversity-focused organizations, and through faculty mentoring connections.Additionally, the program retains students by leveraging practices that have been shown, in
Education, 2023 Closing the Gap between Industry and Academia via Student Teams SupportAbstractA well-known challenge in engineering education is the attempt to balance the demands of industryrecruitment with the core needs of an already packed engineering curriculum. Due to timeconstraints, real-world examples and other learning opportunities that aim to develop andconsolidate the industry-desirable skills can be difficult to include in the curriculum. One way toaddress this challenge is to collaborate with industry (for example, on capstone projects, studentteam challenges, etc.) while the students are still studying. A place for these collaborations, whichcan provide benefit for both parties, is through student competitions. Student
, Chile). She authored several manuscripts in the science education area, joined several research projects, participated in international conferences with oral presentations and key note lectures and serves as referee for journals, funding institutions and associations. ©American Society for Engineering Education, 2023A mandatory early internship course: an analysis on engineeringidentity of students.AbstractAccording to the literature, engineering identity significantly affects motivation and retentionamong students, and engagement and involvement in the industry seem crucial in attainingsuch identity.For this evidence-based paper, we report the experience of a new mandatory early internshipcourse in
challenging for faculty members who are more accustomed to documentingteaching and content delivery. INCOSE does not require that universities teach the contentwithin the recognized course(s). This allows for thesis or final project courses, often taught to awide range of undergraduate students, to qualify for AcEq.Academic Equivalency was designed to offer an alternate path for assessment in languages otherthan English, in countries outside the United States and Western Europe. Despite that intent,fourteen of the fifteen academic equivalencies are in the United States. The champions of theseprograms typically pursue AcEq as a way to provide structure to their courses. It should benoted that only a small portion of AcEq-qualifying students pursue and
the Department of Technology Leadership & Inno- vation at Purdue University. Her research examines organizational communication, particularly in the contexts of destructive workplace behaviors, leadership, teams, and workforce development. Notably, Dr. Linvill is a Co-Principal Investigator on the SCalable Asymmetric Lifestyle Engagement (SCALE) production proposal, funded by the Department of Defense, with colleagues in Purdue’s College of En- gineering. The project focuses on developing a scalable and sustainable workforce development program for microelectronics that will serve as a model for other workforce development efforts (i.e., artificial intelligence, hypersonics). In this role, she examines