AC 2007-452: A HYDRAULIC CIRCUITS LABORATORY – TO IMPROVESTUDENT UNDERSTANDING OF BASIC ELECTRICITYR. William Graff, LeTourneau University R. William Graff is a professor in the School of Engineering and Engineering Technology at LeTourneau University, where he has taught since 1975. He received his B.S., M.S., and Ph.D. degrees from Purdue University in electrical engineering. Prior to joining the faculty at LeTourneau, he was assistant professor of electrical engineering at Drexel University for six years, and at Wilkes College for two years. His professional interests include antennas, microwaves, plasmas, teaching, and ethics.Paul Leiffer, LeTourneau University Paul R. Leiffer is
Paper ID #9062A Realistic Intelligent Multimedia Virtual Laboratory for Power EngineeringMr. Ning Gong, Department of Electrical and Computer Engineering, Temple University Ning Gong is currently a second year PhD student in Electrical and Computer Engineering at Temple Uni- versity. His research is focused on Computer Network and Control Theories. He is particularly interested in network topologies and resilience control applications. Before coming to Temple University, he grad- uated in Polytechnic Institute of New York University with his M.S degree. Currently he is a Graduate Research Assistant in the department
AC 2012-4044: FACTORIAL DESIGN OF EXPERIMENTS FOR LABO-RATORIES INCORPORATING ENGINEERING MATERIALSDr. David R. Veazie, Southern Polytechnic State University David Veazie received his B.S. in mechanical engineering from Southern University in 1986, and his M.S. and Ph.D. in mechanical engineering from Georgia Tech in 1987 and 1993, respectively. He worked for AT&T Bell Laboratories in New Jersey as a member of the technical staff and was a National Research Council (NRC) Postdoctoral Fellow at the NASA Langley Research Center. In 1994, he joined Clark Atlanta University’s Department of Engineering, and was the Director of the Mechanical Testing Labora- tories (MTL) and Associate Director of the NASA-funded High
AC 2012-4382: FACTORS THAT AFFECT STUDENT FRUSTRATION LEVELIN INTRODUCTORY LABORATORY EXPERIENCESDr. Tomas Estrada, Elizabethtown CollegeDr. Sara A. Atwood, Elizabethtown College Page 25.629.1 c American Society for Engineering Education, 2012 Factors that affect student frustration level in introductory laboratory experiencesAbstractLaboratory-based courses have long been an integral part of undergraduate curricula in bothengineering and basic sciences, and much research has been devoted to gauging and improvingtheir effectiveness1,2. However, particularly in introductory courses with students
Paper ID #9526Green Plastics Laboratory by Process Oriented Guided Inquiry Learning(POGIL)Dr. Spencer S Kim, Rochester Institute of Technology (RIT) Dr. Spencer Kim is an Associate Professor in Mechanical and Manufacturing Engineering Technology Department (MMET) at RIT, and serves as Associate Director of American Packaging Corporation Cen- ter for Packaging Innovation at RIT. He previously worked in the semiconductor industry. Dr. Kim, as a PI or Co-PI, received grants and sponsorship from NSF, SME, SPE, universities, and industries. In 2009 and 2013, he was nominated for the Eisenhart Award for Outstanding Teaching, RIT’s
AC 2011-1505: INNOVATIVE SHAKE TABLE LABORATORY INSTRUC-TION: IMPLEMENTATION AND ASSESSMENT OF STUDENT LEARN-INGAlyn Marie Turner, University of Wisconsin-Madison Alyn Turner is a graduate student in the Department of Sociology at the University of Wisconsin-Madison. Her research interests are in education policy evaluations, social stratification and inequality, and sociol- ogy of education.Sandra Shaw Courter, University of Wisconsin, Madison Sandra Shaw Courter is co-PI for ”Deployment and Integration of Shake Tables Using the NEES Cyber- infrastructure.” She is Professor Emeritus in the Department of Engineering Professional Development and Wendt Commons: Teaching and Learning Services. Her area of research is
AC 2012-5155: DEVELOPING INQUIRY-BASED LABORATORY EXER-CISES FOR A MECHANICAL ENGINEERING CURRICULUMProf. Sriram Sundararajan, Iowa State University Sriram Sundararajan is an Associate professor of mechanical engineering at Iowa State University. He is currently the Associate Chair for Undergraduate Programs and oversees curricular and program matters including assessment and continuous improvement efforts. His research areas encompass scanning probe microscopy, multiscale tribology (friction, lubrication and wear), and surface engineering. More recently, he has focused on atom scale mapping of thin film material systems using 3D-atom probe microscopy. He has authored over 50 articles in peer-reviewed journals and
AC 2012-3678: A GRID OF ONLINE LABORATORIES BASED ON THEILAB SHARED ARCHITECTUREProf. Michael E. Auer, Carinthia Tech Institute, Austria Since 1995, Michael Auer is professor of electrical engineering at the Systems Engineering Department of the Carinthia University of Applied Sciences, Villach, Austria and has also held teaching positions at the universities of Klagenfurt (Austria), Amman (Jordan), Brasov (Romania), and Patras (Greece). He was invited for guest lectures at MIT Boston and Columbia University and technical universities of Moscow, Athens, and others. He is a Senior Member of IEEE and member of VDE, IGIP, etc., author or co-author of more than 180 publications, and a leading member of numerous national
AC 2011-2062: SPIRAL LABORATORIES IN THE FIRST-YEAR MECHAN-ICAL ENGINEERING CURRICULUMDebra J. Mascaro, University of Utah Debra J. Mascaro is the Director of Undergraduate Studies in Mechanical Engineering at the University of Utah. She holds a B.A. in Physics from Gustavus Adolphus College in St. Peter, MN and a Ph.D. in Materials Science and Engineering from the Massachusetts Institute of Technology. She teaches freshman design and senior-/graduate-level classes in microscale engineering and organic electronics.Stacy J. Morris Bamberg, University of Utah Stacy J. Morris Bamberg is an assistant professor of Mechanical Engineering at the University of Utah. She received her S.B. and S.M. in Mechanical Engineering
AC 2011-2530: LAB@HOME: REMOTE LABORATORY EVOLUTION INTHE CLOUD COMPUTING ERAHamadou Saliah-Hassane, University of Quebec in Montreal Professor Saliah-Hassane is a senior researcher at the Inter-university Research Center (LICEF), and member of the Ordre des ingnieurs du Qubec (OIQ); of the IEEE (Member of the Administrative Com- mittee of IEEE Education Society (- 2010), Communication Society and Computer Society); of the American Society for Engineering Education (ASEE). He teaches informatics and computer networks at Tl-universit, a Distance Education University of University of Quebec in Montreal (UQAM). Profes- sor Saliah-Hassane has a PhD in Computer Aided Analysis and Design from the Electrical and Computer
. Page 22.428.1 c American Society for Engineering Education, 2011 Design Aspects of a Database for Remote Laboratory ManagementAbstract This paper describes the design of a database which is used to manage the remote laboratoryRLAB. RLAB allows users from all over the world to access a set of real world physical models,to perform experiments by interactively working with them in a realtime environment, and todownload the resulting data to their own computer system for further processing. The onlyrequirement for the user's computer is an internet browser. RLAB was originally developed at Cologne University of Applied Sciences (CUAS) inGermany; it uses NI LabVIEW to perform the interfacing to the real world
AC 2011-2037: A REMOTE LABORATORY FOR ROBOTICS ACCURACYAND RELIABILITY STUDIESRichard Chiou, Drexel University Dr. Richard Chiou’s background is in mechanical engineering with an emphasis on manufacturing. Dr. Chiou is currently an associate professor in the Goodwin School of Technology and Professional Studies at Drexel University. His areas of research include machining, mechatronics, and internet based robotics and automation. He has secured many research and education grants from the NSF, the SME Education Foundation, and industries.Robin Kizirian, Drexel University Robin Kizirian completed his M.S. degree in Computer Engineering at Drexel University in Philadelphia and his B.S. degree in Computer
AC 2010-2188: FLEXIBLE CIS LABORATORY ENVIRONMENT EMPLOYINGMULTI-BOOT AND VIRTUAL COMPUTINGDawn Spencer, Colorado State University, PuebloNebojsa Jaksic, Colorado State University, Pueblo Page 15.593.1© American Society for Engineering Education, 2010 Flexible CIS Laboratory Environment Employing Multi-boot and Virtual ComputingAbstractThis work describes an innovative flexible multipurpose laboratory environment designed tosupport a large variety of laboratory exercises in a Computer Information Systems (CIS)curriculum. The environment employs multi-boot and virtual computing. Although it may beideal to have separate labs for each course
AC 2009-1328: A NEW ELECTRICAL ENGINEERING LABORATORY FACILITYCOMBINES TRADITIONAL LABORATORY EXPERIMENTS,COMPUTER-BASED LAB EXERCISES, AND LABS TAUGHT VIA DISTANCERobert Egbert, Missouri State University Dr. Robert Egbert is Professor of Electrical Engineering at Missouri State University (MSU) in Springfield, MO. He received B.S., M.S., and Ph.D. degrees from the University of Missouri - Rolla (now Missouri University of Science and Technology - Missouri S&T). He has industrial experience with Black & Veatch Consulting Engineers in Kansas City and MKEC Engineering Consultants in Wichita, KS. He was a member of the faculty of the Department of Electrical and Computer Engineering at
Paper ID #19093Non-Expert Sensor-Based Laboratory Development: A Prototype Mobile Ap-plication for Rapid Development, Deployment, and Sharing of LaboratoryExperimentsDr. Tania Celli Machet, The University Of Sydney Tania Machet is a PhD graduate working at The University of Sydney whose current research concerns remote laboratories and how these can be used to enhance engineering education. She is currently working on the development of non-expert sensor based laboratories for use in schools and universities.Prof. David Lowe, The University of Sydney Professor David Lowe is Associate Dean (Education) and Professor of Software
AC 2008-749: BIOTECHNOLOGY AND BIOPROCESSING ANDMICROBIOLOGY LABORATORY COURSES: A MODEL FOR SHARED USE OFINSTRUCTIONAL LABORATORIES BETWEEN ENGINEERING AND SCIENCESusan Sharfstein, Rensselaer Polytechnic Institute Susan Sharfstein is an Assistant Professor in the Departments of Chemical and Biological Engineering and Biology at Rensselaer Polytechnic Institute. Her research interests are in mammalian cell culture for bioprocessing. Her teaching interests are in biotechnology and biochemical engineering and in integrating engineering and life science education. Professor Sharfstein received her Ph.D. in Chemical Engineering from UC Berkeley. She is the recipient of an NSF CAREER award whose
AC 2008-1375: HUMAN AND INFRASTRUCTURE ISSUES IN THEDEVELOPMENT OF WEB-BASED LABORATORIES IN CHALLENGEDENVIRONMENTSDavid Olowokere, University of Alabama at BirminghamLawrence O. kehinde, Texas Southern University, Houston, TexasOlutola Jonah, Obafemi Awolowo UniversityOladipo O. Osasona, Obafemi Awolowo University, Ile-Ife, NigeriaE.O.B. ajayi, Obafemi Awolowo University, NigeriaKayode P. Ayodele, Obafemi Awolowo University Page 13.675.1© American Society for Engineering Education, 2008 Human and Infrastructure Issues in the Development of Web- Based Laboratories in Challenged EnvironmentsWeb-based laboratories (WBL) involve not only hardware and software buthuman
From the Proceedings of the 2008 meeting of the American Society of Engineering Education Session 3426 Educational Particle Image Velocimetry Interactive Experiment Suites Murat Okçay PhD and Bilgehan Uygar Öztekin PhD Interactive Flow Studies Abstract: Laboratory experience is an essential component of teaching Fluid Mechanics. Hands-on teaching methods provide a lasting understanding of the fluid flow principles. Particle Image Velocimetry (PIV) has become a very powerful technique for studying fluid mechanics. Unfortunately very high price
C. Law, Ken M.Edmondson, Chris M. Fetzer, Geoff S. Kinsey, Hojun Yoon, Raed A. Sherif, Dimitri D. Krut, James H.Ermer, Peter Hebert, Peichen Pien, and Nasser H. Karam Spectrolab, Inc., 22nd EUPVSEC, Milan ItalyInternational (http://www.silvaco.com).[4] National Renewable Energy Laboratory, http://www.nrel.gov[5] Limiting efficiency of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells, J. Applied Physics,51,4494 (1980)[6] Spectrolab, INC. http//www.spectrolab.com[7] SILVACO’s ATLAS User’s Manual. Device simulation Software. Volumes I and II. Silvaco[8] The outlook on Renewable Energy in America Vol II: Joint Summary, ACORE March, 2007
presently employed by Mine Safety Appliances Company in Pittsburgh, PA.CHITRA RAJAGOPAL, Kent State University, Tuscarawas Campus Ms Chitra Rajagopal is Assistant Professor of Engineering Technology at the Kent State University, Tuscarawas Campus, where she teaches electrical and electronic engineering technology courses in in-person and on-line formats. She is currently researching on embedded system design, microcontrollers and control system. Page 13.390.1© American Society for Engineering Education, 2008 Developing an Advanced Digital Control Laboratory with a System-On-a
AC 2008-2288: UTILIZING A PCI DAQ BOARD IN THE LABORATORY COURSEOF MICROPROCESSOR SYSTEMS AND INTERFACINGYanfei Liu, Indiana University Purdue University, Fort Wayne (Eng) Dr. Yanfei Liu received the B.S.E.E. Degree from Shandong Institute of Architecture and Engineering in July 1996. She then received the M.S.E.E. Degree from the Institute of Automation, Chinese Academy of Sciences in July 1999, and Ph.D. Degree from Clemson University in August 2004. She has been a member of the IPFW Department of Engineering since August 2005. Dr. Liu’s research interests include robotics, dynamic manipulation, computer vision and image processing
AC 2008-2502: UNIFYING LABORATORY CONTENT OF A DIGITAL SYSTEMSAND COMPUTER ARCHITECTURE CURRICULUM THROUGH HORIZONTALAND VERTICAL INTEGRATIONSteve Naumov, Purdue University Calumet Steve Naumov graduated in 2007 with highest distinction from Purdue University Calumet with a B.S. in Computer Engineering and minor in applied mathematics. He intends on pursuing a Ph.D. in electrical engineering from the University of Wisconsin – Madison. His research interests include high performance computer architecture, digital system verification, and computer architecture education. Along with initiating the accomplishments described in this paper, he has held two consecutive internships at Intel Corp. as
inviscid fluid flow behavior, as well toillustrate the relative importance of various sources of mechanical energy losses to wind tunneldesign.This paper presents the authors experience with modifying an Aerolab educational wind tunneltest facility for experimental work associated with an Undergraduate Campus Internship (CSI)mentoring program project. The purpose of this laboratory activity was to demonstratecharacteristics of variable area duct flow and diffuser boundary layer separation using flowvisualization by smoke injection. A simple modification to the test section region of the windtunnel was made to conform to a converging and/or diverging (diffuser) duct flow configuration.This setup was used in conjunction with a special-purpose smoke
graduate and undergraduate levels. Her interest also includes outreach and curriculum development for K-12. Page 13.450.1© American Society for Engineering Education, 2008 Does the Index of Learning Styles Predict Laboratory Partner Success in Electronics Courses?IntroductionThis paper presents the results of a study into the success of various combinations of learningstyles for laboratory partners in electronic courses. Specifically we are using the Introduction toCommunications (electronics) course/lab in the Department of Electrical and
AC 2009-1053: REMOTE EXPERIMENTATION WITH MEMS DEVICESBill Diong, Texas Christian UniversityJamie Smith, Lockheed-Martin AeronauticsEdward Kolesar, Texas Christian UniversityRene Cote, Texas Christian University Page 14.1019.1© American Society for Engineering Education, 2009 Remote Experimentation with MEMS DevicesI. IntroductionA project was recently initiated with the main goal of enabling those students enrolling in ourDepartment’s undergraduate Materials Science course – a required course – to conduct aparticular experiment via the Internet on a Microelectromechanical System (MEMS) device thatis located in an on-campus research laboratory. Broader and longer
ethics and engineeringscience(1,2,3,4). MEA research uses open-ended case studies to simulate authentic, real-worldproblems that small teams of students address. As part of a collaborative, large-scale NationalScience Foundation project, this paper describes our first efforts to develop MEAs whichincorporate a laboratory or hands-on component.We will explain more about MEAs momentarily, but first wanted to provide more motivationsfor this specific effort. When teaching thermodynamics on the quarter system, we typicallycover the First and Second Laws of Thermodynamics for both open and closed systems in thirty50-minute class sessions. Due to the rushed nature of this class, there are many fundamentalconcepts which do not get the care and
AC 2009-1451: A FRAMEWORK FOR DEVELOPING A COHESIVE SET OFREMOTE LABORATORIES FOR DISTRIBUTED DISTANCE-LEARNINGSETTINGSAndrew Hyder, Georgia Institute of Technology Andrew Hyder Is working on his Mechanical Engineering masters in design at Georgia Tech. He is interested in working with engineering education and how to better distance learning practices for universities and companies. While getting his bachelor degree in Mechanical Engineering at Western Michigan University, he became involved in ASEE, Tau Beta Pi, ASME and various other organizations which he is still involved in today.Brian Post, Georgia Institute of Technology Brian Post holds a Bachelor of Science in Mechanical Engineering from
AC 2009-1640: HANDS-ON EXPERIENCE WITH RANKINE CYCLE IN THETHERMAL SCIENCE LABORATORY COURSEMessiha Saad, North Carolina A&T State University Messiha Saad is an Assistant Professor of Mechanical Engineering at North Carolina A&T State University. He received his Ph.D. from North Carolina State University. He taught Mechanical engineering core courses for more than twelve years; he also teaches Internal Combustion Engines, Design of Thermal Systems, HVAC, and related courses in the Thermal Science areas. He received numerous teaching awards including: The Most Helpful Teacher of the Year Award in 2005, Procter & Gamble Student Choice Award Favorite Teacher in 2004, and Teacher of