kind of laboratory work,” while Rebecca Brentspoke about her involvement with engineering teaching workshops: “I think [my contribution] is pretty much out there in the workshop work. … I think I work with people really well one-on-one. I think I have developed a lot of the materials that we use and brought in a lot of ideas. So I’m more of a behind the scenes person than an out there in front person.”Similarly, Michael Pavelich commented: “I hope [my contribution] is to have documented the importance of these learning taxonomies and to take them seriously and understand them fully, and then models of how to implement that kind of thinking in the classroom, and then finally ways of measurement that make sense or that really speak to
of improving students’ development along one or more of the patterns. Additionally, we believe CSR is a particularly appropriate method for this study because the method permits teaching practices to be studied in the context of a real classroom. The classroom setting within our case study contrasts the laboratory setting used by a large number of studies that have informed the development of the matrix (e.g., [6][9]). The controlled conditions of these research studies do not accurately reflect engineering practice which often requires engineers to work on teams over long durations to solve complex problems. Additionally, the clinical setting does not reflect an educational setting in which a teacher is available to help guide and
Paper ID #30590Increased Performance via Supplemental Instruction and Technology inTechnical ComputingDr. Nathan L Anderson, California State University, Chico Dr. Nathan L. Anderson is an Assistant Professor in the Department of Mechanical and Mechatronic Engineering and Sustainable Manufacturing at California State University Chico. He engages in multiple research projects spanning computational materials science to educational pedagogy. Prior to joining academia, he worked in the semiconductor manufacturing industry for KLA Corporation. Before industry, he spent time at Sandia National Laboratories. He earned his Ph.D. in
mathematics by applying evidence-based teaching strategies—student-centeredproblem-based teaching(SC-PBT), example-based teaching, and just-in-time teaching (JITT); (3)incorporating classroom and laboratory activities that require active student engagement,conceptual understanding, critical thinking, and problem-solving; and (4) Employing modelstudents to lead Supplementary Instruction (SI) courses with evidence-based peer-to-peerlearning strategies. This section mainly describes the details on the implementation of evidence-based teaching and SI program in selected STEM gateway courses.3.1 Implementing evidence-based teaching in STEM gateway coursesInnovative, evidence-based instructional practices are critical to transforming the
, "Growing a garden without water: Graduate teaching assistants in introductory science laboratories at a doctoral/research university", Journal of Research in Science Teaching, vol. 41, no. 3, pp. 211-233, 2004. Available: 10.1002/tea.20004.[14] C. Marshall and G. Rossman, Designing qualitative research. 2016.[15] W. Penuel, B. Fishman, B. Haugan Cheng and, N. Sabelli, "Organizing Research and Development at the Intersection of Learning, Implementation, and Design", Educational Researcher, vol. 40, no. 7, pp. 331-337, 2011. Available: 10.3102/0013189x11421826.[16] S. Shehab, E. Mercier, M. Kersh, G. Juarez, and, H. Zhao, “Designing Engineering Tasks for Collaborative Problem Solving,” in Making a Difference
$25,000 to more than $2 million annually. He introduced Polytech- nic’s first computer-based instructional laboratory. In 1983 he became Associate Provost for Computing and Information Systems. During the early stages of the PC and Workstation explosion he worked closely with Aerospace and Architectural and Engineering Design companies to lead the University’s develop- ment of Interactive Computer Graphics and Computer Aided Design (CAD) laboratories and curricula. He won a $3.2 million IBM CAD/CAM grant which enabled introduction of CAD/CAM and VLSI in- struction at Polytechnic. He served as Dean Graduate Studies 1986 - 1992, a position in which he had responsibility for recruiting graduate students and establishing
is currently launching CU Teach Engineering, a unique initiative to produce secondary science and math teachers through a new design-based engineering degree, with the ultimate goal of broadening participation among those who choose to come to engineering college.Beth A Myers, University of Colorado Boulder Beth A. Myers is the engineering assessment specialist for the Integrated Teaching and Learning Program at the University of Colorado Boulder. She holds a BA in biochemistry, ME in engineering management and is currently a PhD candidate studying engineering education at the College of Engineering and Ap- plied Science. She has worked for the University of Colorado in various capacities for 16 years, including
Paper ID #30725What do Undergraduate Engineering Students and Preservice Teachers Learnby Collaborating and Teaching Engineering and Coding through Robotics?Dr. Jennifer Jill Kidd, Old Dominion University Dr. Jennifer Kidd is a Senior Lecturer in the Department of Teaching and Learning at Old Dominion Uni- versity. Her research interests include engineering education, computational thinking, student-authored digital content, classroom assessment, especially peer review, and diversity issues. She currently has sup- port from the National Science Foundation for two projects related to engineering education for preservice
- sity. Dr. Nagel joined James Madison University after completing his Ph.D. in mechanical engineering at Oregon State University. Nagel teaches and performs research related to engineering design. Specifically, through research, Nagel explores how design interventions commonly used to teach design influence stu- dent learning.Dr. Julie S. Linsey, Georgia Institute of Technology Dr. Julie S. Linsey is an Associate Professor in the George W. Woodruff School of Mechanical Engineer- ing at the Georgia Institute of Technological. Dr. Linsey received her Ph.D. in Mechanical Engineering at The University of Texas. Her research area is design cognition including systematic methods and tools for innovative design with a
steps in the lab manual, and thereby gain both learning benefits (by cyclingfurther around Kolb’s learning cycle) and metacognitive benefits (by reflecting on the context ofthe laboratory task). This hypothesis was tested in a controlled experiment at Harvey-MuddCollege, a small, STEM-focused liberal arts college. The introductory engineering course at thecollege teaches discipline-agnostic, mathematical modeling of engineering systems using aflipped classroom with tightly coupled laboratory sessions. Approximately half of the studentsin the laboratory sections received treatment lab manuals with many interactive questions, whilethe other half received control lab manuals that contained fewer questions. The groups wereassessed in various ways
improve technical writing instruction in laboratory courses, a multidisciplinary team ofprofessors in the departments of Writing and Engineering (1) developed a curricular frameworkthat integrates common practices of teaching technical writing in tandem with existing engineeringlaboratory courses and (2) trained a set of students to be Engineering Writing Fellows (EWF),undergraduate engineering students who tutored peers in their technical writing assignments. Thispaper will share the student and instructor opinions of these initiatives employed in the LinearCircuits Analysis Laboratory course. Analysis of the initiatives was conducted via student surveyand comparison of student writing pre and post EWF tutoring. Results show students
Paper ID #16477Implementing a Challenge-Inspired Undergraduate ExperienceDr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Lecturer in bioengineering at the University of Illinois at Urbana-Champaign. In her career, Marcia has been active in improving undergraduate education through developing problem-based laboratories to enhance experimental design skills; developing a preliminary design course focused on problem identification and market space (based on an industry partner’s protocol); and mentoring and guiding student teams through the senior design capstone course and a translational
assistant with the Visualization, Analysis, and Imaging Laboratory (VAIL), the GeoResources Institute (GRI), Mississippi State University. He is currently an Associate Professor with the Department of Engineering Technology, Prairie View A&M University. His research interests include digital signal processing, image and video coding, and wavelets.Dr. Suxia Cui, Prairie View A&M University Suxia Cui is an associate professor in the Department of Electrical and Computer Engineering at Prairie View A&M University (PVAMU). She joined PVAMU right after she obtained her Ph.D. degree in Com- puter Engineering from Mississippi State University in 2003. Her research interests include image and video processing
Paper ID #15038The Impact of Project-based Learning on Engagement as a Function of Stu-dent DemographicsMs. Alyssa Bellingham, Drexel University Alyssa Bellingham is currently an electrical engineering Ph.D candidate at Drexel University. She re- cieved her B.S/M.S degrees in electrical engineering from Drexel University in 2012 and has a degree in materials engineering from Politecnico di Milano. As a National Science Foundation Stem GK-12 Pro- gram fellow, she has been teaching a robotics course at the Science Leadership Academy in Philadelphia.Mr. John Kamal, Science Leadership Academy John teaches young people
work, she developed and validated a new interdisci- plinary assessment in the context of carbon cycling for high school and college students using Item Re- sponse Theory. She is also interested in developing robotics-embedded curricula and teaching practices in a reform-oriented approach. Currently, a primary focus of her work at New York University is to guide the development of new lessons and instructional practices for a professional development program under a DR K-12 research project funded by NSF.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a
research of learning and teaching based on particular designs for instruction” (pp. 199-200)5. In DBR, we use theory to inform our course design and collect data to evaluate the desiredstudent outcomes. DBR differs from laboratory experimental research in that DBR is situated inreal-world contexts where confounding factors are difficult to control, whereas laboratoryexperiments aim to control for such factors6. DBR also differs from action research in that DBRapplies theory in real-world contexts, whereas action research serves to solve an immediateproblem that often involves the use of non-research personnel7.The outcomes of DBR include theory generation and practical educational interventions.Through our study, we will generate theory by
Paper ID #13186Enhancing Accessibility of Engineering Lectures for Deaf & Hard of Hearing(DHH): Real-time Tracking Text Displays (RTTD) in ClassroomsMr. Gary W Behm, Rochester Institute of Technology (CAST) Gary W. Behm, Assistant Professor of Engineering Studies Department, and Director of NTID Center on Access Technology Innovation Laboratory, National Technical Institute for the Deaf, Rochester Institute of Technology. Gary has been teaching and directing the Center on Access Technology Innovation Laboratory at NTID for five years. He is a deaf engineer who retired from IBM after serving for 30 years. He is a
Paper ID #34949Identifying Signature Pedagogies in a Multidisciplinary EngineeringProgramDr. Kimia Moozeh, University of Toronto Kimia Moozeh has a PhD in Engineering Education from University of Toronto. She received her Hon. B.Sc. in 2013, and her Master’s degree in Chemistry in 2014. Her dissertation explored improving the learning outcomes of undergraduate engineering laboratories by bridging the learning from a larger context to the underlying fundamentals, using digital learning objects.Lisa Romkey, University of Toronto Lisa Romkey serves as Associate Professor, Teaching Stream and Associate Chair, Curriculum
Columbia University and the Cooper Union in New York City. She received her PhD from Columbia University in 2006, where her research focused on the mechanical and frictional properties of articular cartilage. Dr. Basalo ’s teaching experience includes Thermodynamics, Computer Graphics, Materials Science and laboratory courses. Since 2015 she has been actively involved in the University of Miami College of Engineering’s ”Redefining Engineering Education” strategic plan on educational innovation. As part of this plan, Dr. Basalo worked with 2 other faculty members to organize inaugural Senior Design Expo in May 2017, an exposition where over 200 senior students showcased their Capstone projects to the University of Miami
Paper ID #25131Work in Progress: A Transferable Model to Improve Retention and StudentSuccess in STEM through Undergraduate Research (NSF LEARN Consor-tium)Dr. Daniel Meeroff, Florida Atlantic University Daniel Meeroff is Professor and Associate Chair at Florida Atlantic University’s Department of Civil, En- vironmental & Geomatics Engineering. His area of specialization is Environmental Engineering, specifi- cally water and wastewater engineering, water quality, solid and hazardous waste management, and pollu- tion prevention. Dr. Meeroff is the founder and director of the Laboratories for Engineered Environmental
development as"development which meets the needs of the present without compromising the ability of futuregenerations to meet their own needs2". Barbier3 interpreted the definition of the WECD bydescribing sustainable development as indistinguishable from the total development of society.Other definitions of sustainable development include: “Sustainable means using methods,systems and materials that won't deplete resources or harm natural cycles4.” Teaching forsustainable development is usually referred to as Sustainability Education, Education forSustainability, or Education for Sustainable Development (ESD). The United Nations adopts theterm ESD5, 6
Paper ID #21940Impact of Prior Experiences on Future Participation in Active LearningMr. Robert Matthew DeMonbrun, University of Michigan Matt DeMonbrun is a Ph.D. Candidate at the Center for the Study of Higher and Postsecondary Education (CSHPE) in the School of Education at the University of Michigan. His research interests include college student development theory, intergroup interactions, and teaching and learning practices and how they relate to student learning outcomes in engineering education.Dr. Cynthia J. Finelli, University of Michigan Dr. Cynthia Finelli is Associate Professor of Electrical Engineering and
is focused on enhancing educational access for deaf and hard of hearing students in mainstreamed classrooms. He worked in industry for over five years before returning to academia and disability law policy. Towards that end, he completed a J.D. and LL.M. in disability law, and an M.S. and Ph.D. in Computer Science.Mr. Gary W. Behm, Rochester Institute of Technology Gary W. Behm, Assistant Professor of Engineering Studies Department, and Director of NTID Center on Access Technology Innovation Laboratory, National Technical Institute for the Deaf, Rochester Institute of Technology. Gary has been teaching and directing the Center on Access Technology Innovation Laboratory at NTID for five years. He is a deaf
to meet at least weekly outside ofthe classroom with their design teams. The main lectures had approximately 350 students; while,each of the 24 laboratory sections had a maximum of 32 students. The laboratory sections meetin a classroom located in the back of an open engineering lab (OEL) that was available tostudents from 9 am – 9 pm seven days per week. The OEL is a large open work space wherestudents are encouraged to work on their semester-long design project as well as to use it as astudy space. The OEL was open to all engineering students but was primarily used by students inthe first-year course. Typically, between 30 and 100 students as well as 3-8 members of theteaching staff (three lectures, 13 graduate teaching assistants, and 11
Paper ID #31759Combining Strategies for Leadership Development of Engineering StudentsDr. Nayda G. Santiago, University of Puerto Rico, Mayaguez Campus Nayda G. Santiago is professor at the Electrical and Computer Engineering department, University of Puerto Rico, Mayaguez Campus (UPRM) where she teaches the Capstone Course in Computer Engineer- ing. She received an BS in EE from the University of PR, Mayaguez in 1989, a MEng in EE from Cornell University in 1990, and a PhD in EE from Michigan State University in 2003. She leads the Southeast region of the Computing Alliance for Hispanic Serving Institutions (CAHSI). Dr
Professor and Department Chair in the Civil and Environmental Engineering Department at San Jos´e State University. She obtained her BS from the University of Dayton (Dayton, OH) in 2002 and her MS (2005) and PhD (2008) from Northwestern University (Evanston, IL). She teaches in the areas of Geotechnical Engineering, Engineering Mechanics, and Forensic Engineering. Her research interests include evaluating crack age in construction materials, forensic engineering education, and STEM education pedagogy. She serves on the SJSU Academic Senate as the chair of the Instruction and Student Affairs committee and the Forensic Engineering Division of the American Society of Civil Engineers. Laura is the PI for the Department of
incoming freshmen cope with first year mathematics classes. She developed teaching modules to improve students’ learning in mathematics using technology.Dr. M. Javed Khan, Tuskegee University Dr. M. Javed Khan is Professor and Head of Aerospace Science Engineering Department at Tuskegee University. He received his Ph.D. in Aerospace Engineering from Texas A&M University, M.S. in Aero- nautical Engineering from the US Air Force Institute of Technology, and B.E. in Aerospace Engineer- ing from the PAF College of Aeronautical Engineering. He also has served as Professor and Head of Aerospace Engineering Department at the National University of Science and Technology,Pakistan. His research interests include experimental
Paper ID #24801Clustering from Grouping: A Key to Enhance Students’ Classroom ActiveEngagementDr. Bankole Kolawole Fasanya, Purdue University Northwest Dr. Fasanya is an Assistant Professor in the Department of Construction Science and Organizational Lead- ership, Environmental Health and Safety Concentration at Purdue University Northwest. In this position, he teaches safety and health related courses, as well as improving Environmental Health and Safety cur- riculum through Industrial Advisory Committees. Prior to his current position, he had worked in different capacities with different institutions: He worked as
Award from the College of Engineering in 2014, Halliburton Excellent Young Professor in 2014, and the OSU Regents Research Award in 2014.Ms. Beverly DeVore-Wedding, University of Nebraska - Lincoln Bev DeVore-Wedding is a doctoral student in the College of Education and Human Sciences at the Uni- versity of Nebraska-Lincoln (UNL). In her second year, DeVore-Wedding works with Nebraska Indian Community Colleges (NICC) teaching chemistry, bringing community topics into the classroom for chem- istry content and laboratory connections, and coordinating the NSF grant between UNL NICC. DeVore- Wedding previously taught high school math and science for 28 years in northwestern Colorado in a rural setting. Research interests
Added Course Expenses and Technology Fees on Students of Differing Social and Economic StatusAbstractThe field of electronics has made immense advancements in affordability and portability that havetransformed engineering education. Engineering course curricula have increasingly incorporatedmodern technology that has made a positive impact by creating more hands on activities andexperiments. Specialized laboratory equipment and setups are being replaced with off the shelfdevices and components. Customized printed circuit boards can be purchased cheaply andfabricated in days instead of weeks. Creating these hands on activities has many timescorresponded with an increased expense that is passed on to the students in the form of a