Paper ID #9786Understanding Teaching Assistants’ Assessment of Individual Teamwork Per-formanceMs. Patricia Kristine Sheridan, University of Toronto Patricia Kristine Sheridan is a PhD Candidate with the Institute for Leadership Education in Engineering at the University of Toronto. She holds a BASc and MASc in Mechanical Engineering from the University of Toronto. She is a member of the teaching team and a course developer for the Praxis cornerstone design courses.Dr. Doug Reeve P.Eng., University of Toronto Professor Reeve is the founding Director of the Institute for Leadership Education in Engineering (ILead) at
Savage, R., Chen, K., & Vanasupa L. (2007). Equipping undergraduate engineers for success in the 21st Century. Journal of STEM Education Innovations and Research, 8(3), 15-27.35 Saunders, F. C. & Gale, A. W. (2012). Digital or didactic: Using learning technology to confront the challenge of large cohort teaching. British Journal of Educational Technology, 43(6), 847-858.36 Savasci, F. & Berlin, D. F. (2012). Science teacher beliefs and classroom practice related to constructivism in different school settings. Journal of Science Teacher Education, 23(1), 65-86.37 Schkoda, R. F., Schweisinger, T. A., & Wagner, J. R. (2012). An improved undergraduate mechanical engineering laboratory structure and curriculum
student studying Public Policy at Oregon State University. She also holds an M.S. in Environmental Engineering and a B.S. in Mechanical Engineering from Oregon State Univer- sity. Her research in engineering education is focused on student teams engaged in the Virtual Bioreactor (VBioR) Laboratory project. She is specifically interested in understanding the student-instructor interac- tions and feedback that occur during this project and how these factors influence student learning.Dr. Debra M. Gilbuena, Oregon State University Debra Gilbuena is a postdoctoral scholar in the School of Chemical, Biological, and Environmental Engi- neering at Oregon State University. Debra has an M.BA, an M.S, and four years of industrial
Student- Centric Learning), promoting Leadership in Sustainability and Management Practices. He is also an Affiliate Researcher at Lawrence Berkeley National Laboratory, Berkeley, CA, focusing on the energy ef- ficiency of IT Equipment in a Data Centers. Before his teaching career, he had a very successful corporate management career working in R&D at Lucent Technologies and as the Director of Global Technology Management at Qualcomm. He initiated and managed software development for both the companies in India. He holds MS in Engineering and MBA degrees. Page 24.140.1 c
demonstratedthe importance of research experiences for the preparation of eventual graduate students. At thepre-graduate level, themes related to network access and the role of the institution in facilitatingintellectual experiences were important for the study participants. At the graduate level, identity-trajectory reiterated the need for careful design of the research laboratory, and the importance ofnetworks for graduate student success.Overview of literatureIdentity-trajectory, introduced by McAlpine 8,10 is a theoretical framework used to understand theprofessional development of graduate students and early career academics through threestrands11: network, intellectual and institution. Network focuses on the relationships andresponsibilities that
). Preordained science and student autonomy: The nature of laboratory tasks in physics classrooms. International Journal of Science Education, 18(7), 775-790.27. Seymour, E., & Hewitt, N. M. (1997). Talking about leaving: Why undergraduates leave the sciences (pp. 115- 116). Boulder, CO: Westview Press.28. Marzano, R. J. (1992). A different kind of classroom: Teaching with dimensions of learning. Alexandria, VA: ASCD.29. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational psychologist, 41(2), 75-86.30. Mayer, R. E. (2004). Should there be a three
retention of new knowledge and acquisition of desirable personal traits.Any such method that engages students in the learning process is labeled as: “active learning”method. In essence, active learning requires doing meaningful learning activities in groups underthe guidance of an informed and experienced teacher. As stated by Christensen et al (1), “To teachis to engage students in learning.” The main point is that engaging students in learning isprincipally the responsibility of the teacher, who becomes less an imparter of knowledge andmore a designer and a facilitator of learning experiences and opportunities. In other words, thereal challenge in college teaching today is not covering the material for the students, but ratheruncovering the
more active role in their own learning [1]. However, there existdiverse interpretations and discussions around the idea of what active learning means as well asthe types of teaching and learning approaches that have been utilized by engineering facultyaimed at including active learning in their course delivery. In a comparative literature review [2],it was discovered that there are significant differences in what has been understood and appliedin science classrooms as active learning. Consequently, Chi [2] developed a framework oflearning activities aimed at highlighting the different types of learning activities that are and canbe included in classrooms for maximized results. Building on the work of Chi [2], this paper seeksto explore the
and Adjunct Assistant Professor in the College of Engi- neering at the University of Michigan. She has a B.E. in Chemical Engineering from the University of Dayton and a Ph.D. in Engineering Education from Purdue University. Her research focuses on idea gen- eration, design strategies, design ethnography, creativity instruction, and engineering practitioners who return to graduate school. She teaches design and entrepreneurship courses at the undergraduate and graduate levels. Her work is often cross-disciplinary, collaborating with colleagues from engineering, education, psychology, and industrial design.Prof. Kathleen H. Sienko, University of Michigan Kathleen H. Sienko is a Miller Faculty Scholar and Associate
Pyke is Director of the STEM Station at Boise State University. Her research interests include history of women in science and engineering, STEM student success initiatives, integrating teaching and research, and institutional change. She received a B.S.E. degree in mechanical engineering from Duke University and an M.J. degree in journalism from University of California - Berkeley.Susan Shadle Ph.D., Boise State University Susan Shadle is Director of the Center for Teaching and Learning and a Professor of Chemistry and Bio- chemistry. Dr. Shadle received her Ph.D. in Inorganic Chemistry from Stanford University. Her current scholarship focuses in the areas of faculty development, organizational change, the use of
techniques used by the battery industrythrough leaning the theoretical and practical aspects of battery fabrication. The instructional teamdesigned this course to build students’ conceptual understanding by integrating the usevisualization and graphical artifacts, like the ones depicted in figure two, and engaging thestudents in the use of modeling and computational analysis to complete class projects andhomework assignments.In addition, the instructor focused on teaching students how to model and analyze batterysystems using analytical and computational techniques used by practitioners and research expertsin battery systems design. The computation tool used in the course was the Virtual Kinetics ofMaterials Laboratory (VKML). The VKML tool is an
Youngstown State University, with a Bachelors of Engineering degree in Electrical Engineering in 1981. He then obtained his MS and Ph.D. in Electrical Engineering from GA Tech in 1982, and 1988 respectively. He joined the Electrical and Computer Engineering department at the University of New Mexico where he is currently professor and was the chair between 2005 and June 30, 2011. Since July 1, 2011, Professor Abdallah is the Provost and Executive Vice President for Academic Affairs at UNM. Professor Abdallah conducts research and teaches courses in the general area of systems theory with focus on control and communica- tions systems. His research has been funded by national funding agencies, national laboratories, and by
(including research- and teaching-stream faculty, sessional lecturers andteaching assistants) from across three core second-year courses elected to participate in the studyin 2012-2013; in 2013-2014, nine (9) faculty (including teaching-stream faculty and teachingassistants) from across two core third-year courses elected to participate in the study. Courseswere chosen based on our previous research, notably those that garnered the most frequentmentions from former students as to the impact on their professional development. Theseincluded: • CHE297, Communications Portfolio I • CHE298, Communication • CHE230, Environmental Chemistry • CHE324, Chemical Process Design Laboratory • CHE326, Thermodynamics and Kinetics LaboratoryIndividual
founding faculty member of the James Madison Uni- versity Department of Engineering. At JMU, Dr. Pierrakos is the Director of the Center for Innovation in Engineering Education (CIEE) and Director of the Advanced Thermal Fluids Laboratory. Her interests in engineering education research center around recruitment and retention, engineer identity, engineering design instruction and methodology, learning through service, problem based learning methodologies, assessment of student learning, as well as complex problem solving. Her other research interests lie in cardiovascular fluid mechanics, sustainability, and K-12 engineering outreach. Dr. Pierrakos is a 2009 NSF CAREER Awardee. Dr. Pierrakos holds a B.S. in Engineering
Paper ID #9650Towards Improving Computational Competencies for Undergraduate Engi-neering StudentsDr. Claudia Elena Vergara, Michigan State University Claudia Elena Vergara is a Research Scientist in The Center for Engineering Education Research (CEER). She received her Ph.D. in Plant Biology from Purdue University. Her scholarly interests include: improve- ment of STEM teaching and learning processes in higher education, and institutional change strategies to address the problems and solutions of educational reforms considering the situational context of the par- ticipants involved in the reforms. She is involved in
Paper ID #10242The Evolution of Tactile and Digital Learning Preferences in UndergraduateEngineering EducationDr. Conrad Tucker, Pennsylvania State University, University ParkDr. Kathy Schmidt Jackson, Pennsylvania State University, University Park Dr. Kathy Jackson is a senior research associate at Pennsylvania State University’s Schreyer Institute for Teaching Excellence. In this position, she promotes Penn State’s commitment to enriching teaching and learning. Dr. Jackson works in all aspects of education including faculty development, instructional design, engineering education, learner support, and evaluation.Dr. Linda C
workforce development initiative involving K12 schools and community colleges,and the evaluation of North Carolina’s Race to the Top initiative.Dr. Eric N. Wiebe, North Carolina State University Dr. Wiebe is a Professor in the Department of STEM Education at NC State University and Senior Research Fellow at the Friday Institute for Educational Innovation. A focus of his research and outreach work has been the integration of multimedia and multimodal teaching and learning approaches in STEM instruction. He has also worked on research and evaluation of technology integration in instructional settings in both secondary and post-secondary education. Dr. Wiebe has been a member of ASEE since 1989
now motivated to from other pursue PhD because of faculty) REU. 3 Behavior (+) Use various instruments No Confidence to Advisors very Positive (+) Dream job is to be a No and learned new subjects “self-teach” helpful in researcher or college prior learning process
) theyare required courses and (2) they are upper-level courses typically taken in the Junior or Senioryears. The instructors of these courses are free to select an assessment instrument (e.g., examquestion, homework question, project report, laboratory report, or presentation) for eachPerformance Indicator associated with their assigned SO. Based on the assessment instrumentchosen, the instructor develops a rubric for each Performance Indicator and selects PerformanceCriteria that are used to evaluate the students’ ability to meet that Performance Indicator. Theinstructor’s rubric generally follows a three-tiered approach for assessing the students’performance: “Developing”, “Satisfactory” and “Proficient.” The instructor may select a