Paper ID #39813Understanding Needs of Undergraduate Engineering Students Who ViewDegree Attainment as ”Transactional”Mr. Matthew S. Sheppard, Clemson University I earned my B.S. in Industrial Engineering and my M.S. in Mechanical Engineering; both at Clemson Uni- versity. I have several years’ experience as a Manufacturing Engineer supporting process improvements, machine design, and capital project management. Now, I have entered into the Engineering and Science Education PhD program at Clemson University with hopes of teaching hands-on engineering principles to students in Appalachia after graduation. The focus of my
Paper ID #43022Examining the Relationship between Local Sense of Belonging and Students’Development of Socio-Academic Relationships in Introductory STEM ClassesDr. Trevion S. Henderson, Tufts University Trevion Henderson is Assistant Professor of Mechanical Engineering at Tufts University. He earned his Ph.D. in Higher Education at the University of Michigan.Collette Patricia Higgins, James Madison University ©American Society for Engineering Education, 2024Examining the Relationship between Local Sense of Belonging and Students’ Development of Socio-Academic Relationships in Introductory STEM
Paper ID #42284Visual Voices in Computing: Exploring Photovoice in Computer Science Educationfor Underrepresented GroupsMiss Disha Patel, Florida International University Disha Patel is a computer science Ph.D. Candidate in the School of Computing and Information Sciences (SCIS) at Florida International University. Her research interests include using the photovoice method to investigate how underrepresented students perceive they can be best supported through navigation of the computer science field.Mrs. Monique S. Ross, The Ohio State University Monique Ross earned a doctoral degree in Engineering Education from Purdue
pursue PhD degree where I can work on AI problems that serve science and society.Dr. Catia S. Silva, University of Florida Catia S. Silva is an Instructional Assistant Professor in the ECE department at the University of Florida. Her expertise is in machine learning, data science and engineering education. Dr. Silva is a GitHub Campus Advisor and can help integrate GitHub with your courses. ©American Society for Engineering Education, 2024 Adaptive Affect-Aware Multimodal Learning Assessment System for Optimal Educational Interventions Abstract— Researchers recognize the potential of affective, or emotional, features inenhancing learning systems, but many current
Paper ID #38456Identifying student and institutional factors related to the academicperformance and persistence of vertical transfer students pursuingbaccalaureate engineering technology degreesDr. Courtney S. Green, P.E., University of North Carolina at Charlotte Courtney S. Green, Ph.D., P.E. is a teaching assistant professor and academic advisor for the Office of Student Success and Development within Williams States Lee College of Engineering at the University of North Carolina at Charlotte. She holds an M.S. in Engineering and a Ph.D. in Educational Research, Measurement, and Evaluation from UNC Charlotte.Dr. Sandra Loree
Paper ID #42679Leveraging Lived Experiences of Nontraditional Engineering Students: PreliminaryData and AnalysisDr. Ean H. Ng, Oregon State University Ean H. Ng is an assistant professor at Oregon State University. She received her Ph.D. in Systems and Engineering Management from Texas Tech University. Her research interests include engineering economic analysis, high reliability organization, safety engineering, peer effects in workplace safety, and performance measurement.Dr. Ganapathy S. Natarajan, University of Wisconsin, Platteville Ganapathy Natarajan, Ph.D., CPEM is an Associate Professor in Industrial Engineering
chair of the Research in Engineering Education Network (REEN) and a deputy editor for the Journal of Engineering Education (JEE). Prior to joining ASU he was a graduate research assistant at the Tufts’ Center for Engineering Education and Outreach.Dr. Jean S. Larson, Arizona State University Jean Larson, Ph.D., is the Educational Director for the NSF-funded Engineering Research Center for Bio- mediated and Bio-inspired Geotechnics (CBBG), and Associate Research Professor in both the School of Sustainable Engineering and the Built Environment and the Division of Educational Leadership and Innovation at Arizona State University. She has a Ph.D. in Educational Technology, postgraduate training in Computer Systems
, Texas A&M University Blaine is currently a graduate student earning his Ph.D. in Educational Psychology with an emphasis in Research, Measurement, and Statistics at Texas A&M. His research is primarily focused on issues of equity in STEM education.Camille S. Burnett, Prairie View A&M University Camille S. Burnett, Ph.D., ACUE, is Assistant Professor of Mathematics Education and Director of the SMaRTS (Science, Mathematics, Reading, Technology, and Social Studies) Curriculum Resource Lab in the Department of Curriculum and Instruction at Prairie View A&M University. She has almost 20 years of combined experience in the K-12 and higher education settings. She is also the principal investigator for
of competence ● Validated and reliable student performanceTo answer the Research Question, teaching can be redesigned to support students in transfertheir knowledge and skills by integrating the transfer of learning and authentic assessmentconcepts displayed in Table 1.MethodologyBased on an undergraduate engineering program at the Singapore Institute of Technology,students are exposed to simulations using finite element analysis (FEA) and computationalfluid dynamics (CFD) as part of their Year 1 engineering foundation [15], [16]. In Year 2, thestudents are taught the Mechanical Simulation (M&S) module to learn how to solve ill-structured
practices in US classrooms," Teach. Teach. Educ., vol. 99, p. 103273, Mar. 2021, doi: 10.1016/j.tate.2020.103273[3] M. J. Hannafin, J. R. Hill, S. M. Land, and E. Lee, "Student-centered, open learning environments: Research, theory, and practice," Handbook of Research on Educational Communications and Technology, pp. 641-651, May 2013, doi: 10.1007/978-1-4614- 3185-5_51[4] B. L. McCombs and J. S. Whisler, The Learner-Centered Classroom and School: Strategies for Increasing Student Motivation and Achievement. The Jossey-Bass Education Series. San Francisco, CA: Jossey-Bass Inc., 1997.[5] J. N. Agumba¹ and T. Haupt, "Collaboration as a strategy of student-centered learning in construction technology
educators achieve this much-needed broader vision.References[1] M. E. Cardella, “Early childhood engineering: Supporting engineering design practices with young children and their families,” presented at the NARST 2020 Annual International Conference, Portland, OR, Mar. 2020. [Online]. Available: https://www.researchgate.net/publication/340234317_Early_Childhood_Engineering_Supp orting_Engineering_Design_Practices_with_Young_Children_and_Their_Families[2] National Academies of Sciences, Engineering, and Medicine, Science and engineering in preschool through elementary grades: The brilliance of children and the strengths of educators. Washington, DC: National Academies Press, 2021, p. 26215. doi: 10.17226/26215.[3] S. A
gratefully acknowledge the alumni participants in this study and the contributions ofour research team. Finally, we acknowledge the generous support of this work from theHasso Plattner Design Thinking Research Program.References1. National Academy of Engineering, U. S. (2004). The engineer of 2020: Visions of engineering in the new century. Washington, DC: National Academies Press.2. Wigner, A., Lande, M., & Jordan, S. S. (2016). How can maker skills fit in with accreditation demands for undergraduate engineering programs?. In 2016 ASEE Annual Conference & Exposition.3. Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times. John Wiley & Sons.4. ABET Student Learning Outcomes, Retrieved from
improveretention, researchers have applied asset-based perspectives to studying retention of marginalizedstudents. This approach often emphasizes the role of social capital [1], [11] and socializers [12]–[14] as primary drivers of motivation to pursue STEM education and careers. This present paperbegins to unpack the unique relationship between socializers and the decision students atminority serving institutions (MSIs) make to pursue STEM. We report on the experiences ofstudents gathered using qualitative methods and examined through the lens of expectancy valuetheoretical framework.Theoretical Framework: Expectancy-ValueMotivation to pursue a career in STEM can be modeled through Eccles et al.'s Expectancy-Valuetheory (EV) [15]. EV establishes a direct
definition highlights the depth and complexity of successful mentoring. After a close review of theliterature, we opted for sticking to [31]’s identification of 4 latent variables that were validated by [32] in 2009 forthe College Student Mentoring Scale. The variables underlying the mentor-protégé relationship at the collegiatelevel involve (a) Psychological and Emotional support, (b) Degree and Career Support, (c) Academic SubjectKnowledge Support, and (d) the Existence of a Role Model. While more testing is needed to validate theseconstructs in a variety of settings, it provides an important starting point for a contextually sensitive mentoringstudy. A definition with this level of theoretical specificity can be helpful for assessing program
based learning environment. She was previously an engineering education postdoctoral fellow at Wake Forest University supporting curriculum development around ethics/character education.Dr. Diana Bairaktarova, Virginia Tech Dr. Diana Bairaktarova is an Assistant Professor in the Department of Engineering Education at Virginia Tech. Through real-world engineering applications, Dr. Bairaktarovaˆa C™s experiential learning research spans from engineering to psychology to learning ©American Society for Engineering Education, 2023 Empathy and mindfulness in design education: A literature review to explore a relationshipAbstractLearning to design in undergraduate
(S-STEM) grant to increase engineering degree completion of low-income, high achievingundergraduate students. The project aims to increase engineering degree completion byimproving student engagement, boosting retention and academic performance, and enhancingstudent self-efficacy by providing useful programming, resources, and financial support (i.e.,scholarships). This work is part of a larger grant aimed at uncovering effective strategies tosupport low-income STEM students’ success at HBCUs. The next section will discuss thebackground of this work.Keywords: Historically black colleges/universities (HBCUs), learning environment,undergraduate, underrepresentationBackgroundA public historically black land-grant university in the southeastern
other contexts were not considered.• The research should incorporate at least one significant finding related to the discrimination encountered by Asian engineering students, even if this is not the primary research question the study aims to address. After refining the search criteria, we identified nine studies. These studies arelisted in Table 1.Table 1Selected Studies 1 Bahnson, M., Hope, E., Satterfield, D., Alexander, A., Briggs, A., Allam, L., & Kirn, A. (2022). Students’ Experiences of Discrimination in Engineering Doctoral Education. 2022 ASEE Annual Conference & Exposition. https://peer.asee.org/41006.pdf 2 Lee, M. J., Collins, J. D., Harwood, S. A., Mendenhall, R., & Huntt, M. B
, pp. 151–185, 2011.[6] Elementary science teachers’ sense-making with learning to implement engineering design and its impact on students’ science achievement[7] C. M. Cunningham and G. J. Kelly, “Epistemic Practices of Engineering for Education,” Science Education, vol 1010, no. 3, pp. 486–505, 2017.[8] T. J. Moore, A. W. Glancy, K. M. Tank, J. A. Kersten, K. A. Smith, and M. S. Stohlmann, “A Framework for Quality K-12 Engineering Education: Research and Development,” Journal of Pre-College Engineering Education Research (J-PEER), vol. 4, no. 1, 2014.[9] American Society for Engineering Education and Advancing Excellence in P12 Engineering Education. Framework for P-12 Engineering Learning, 2020
]. Both face and contentvalidity search to decide the degree to which a construct is accurately translated intooperationalization. Face validity examines the operationalization at face value to determinewhether it is a good translation of the construct [26], while content validity examines theoperationalization compared to the construct’s relevant content area(s) (i.e., the appearance thatthe instrument measures what it is intended to measure) [27].Survey items were written by the first author and then reviewed and critiqued by various groups.The authors’ research lab group initially provided feedback on the survey questions’ clarity andreadability, and whether the items are relevant and right for measurement. This research groupbrings expertise
demographics are in Bolton [14] forthe early-career sample and Miskioğlu et al. [6] for the mid-to-late career sample. Allparticipants self-identified as women or men in an open-response text box.Data Collection is also described in detail in prior work [6], [14]. All interviews followed thesame previously tested protocol [1], [6], [14]. This protocol includes three main interviewsections: expertise, decision making, and intuition. In this paper, we are only interested in theintuition section of the interviews.Table 1 Pseudonyms categorized by years of experience with gender identity, racial/ethnicidentity, and degree discipline(s); tables adapted from Miskioglu et al. [6] and Bolton [14] Level of Reported Reported Years of
to be an important part of the life and activity of the class”. This definitionpresents SB as a unidimensional construct, which can be measured as a general SB.Alternatively, Freeman et al. [3] view SB as a multidimensional construct encompassing classbelonging, university belonging, professors’ pedagogical caring, and social acceptance,suggesting that measuring SB should be approached by asking questions that correspond to eachof these dimensions. Given the diversity of conceptual definitions of SB, it is reasonable toanticipate the presence of multiple measurement instruments for this construct. For example,Goodenow’s Psychological Sense of School Membership [PSSM] was created to measure ageneral SB, while William et al.’s Higher Education
research at the graduate level. However, studying creativity at thegraduate level is essential because creativity is required to generate new knowledge throughresearch. This study seeks to address the gap in knowledge about graduate-level creativitythrough a thematic analysis of five semi-structured interviews with engineering graduatestudents. These interviews are part of a larger mixed-methods research project with the goal ofcharacterizing the creative climate of graduate-level engineering education. In the interviews, weasked participants about their creative endeavors, how they define creativity, and theirperceptions of creativity within engineering. We used Hunter et al.’s (2005) creative climatedimensions as a theoretical framework to
mental illness: an exploration of their experiences and challenges,” in 2019 IEEE Frontiers in Education Conference (FIE), 2019, pp. 1–5.[2] J. Meickle, “Beyond burnout: Mental health and neurodiversity in engineering,” 2018.[3] C. L. Taylor, A. Esmaili Zaghi, J. C. Kaufman, S. M. Reis, and J. S. Renzulli, “Divergent thinking and academic performance of students with attention deficit hyperactivity disorder characteristics in engineering,” J. Eng. Educ., vol. 109, no. 2, pp. 213–229, Apr. 2020.[4] C. L. Taylor and A. E. Zaghi, “Leveraging divergent thinking to enhance the academic performance of engineering students with executive functioning difficulties,” Thinking Skills and Creativity, vol. 45, p. 101109, Sep. 2022.[5] L
the NationalScience Foundation.References[1] D. F. Lohman, “Spatial Ability and G.” 1993.[2] K. S. McGrew, “CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research,” Intelligence, vol. 37, no. 1, pp. 1–10, Jan. 2009, doi: 10.1016/j.intell.2008.08.004.[3] H. B. Yilmaz, “On the Development and Measurement of Spatial Ability,” International Electronic Journal of Elementary Education, vol. 1, no. 2, pp. 83–96, Mar. 2009.[4] C. Julià and J. Ò. Antolì, “Enhancing Spatial Ability and Mechanical Reasoning through a STEM Course,” International Journal of Technology and Design Education, vol. 28, no. 4, pp. 957–983, Dec. 2018.[5] M. Stieff and D. Uttal, “How
of growth mindsets than their White peers,yet they also reported lower levels of fixed mindsets [13]. Said differently, Ge et al.’s [13] cross-sectional study showed that White engineering students demonstrate a higher predispositiontowards a growth mindset and a higher predisposition towards endorsing a fixed view of theirabilities. An exploratory study aimed at understanding the relationship between students’engineering identity and mindsets longitudinally found that both a fixed and a growth mindsetwere positive predictors of identity [14]. However, the authors did acknowledge that there may bemoderating effects not considered in the model, such as course difficulty, that may also helpexplain the positive relationships [14]. The studies
. Bilec, A. Dukes, A. Nave, A. Landis, and K. Parrish, “Developing and Sustaining Inclusive Engineering Learning Communities and Classrooms.” In 2022 ASEE Annual Conference & Exposition, Minneapolis, MN, 2022.[3] D. T. Rover, M. Mina, A. R. Herron-Martinez, S. L. Rodriguez, M. L. Espino, and B. D. Le, “Improving the Student Experience to Broaden Participation in Electrical, Computer and Software Engineering,” in 2020 IEEE Frontiers in Education Conference (FIE), 2020, pp. 1–7.[4] L. Long and J. A. Mejia, “Conversations about Diversity: Institutional Barriers for Underrepresented Engineering Students,” J. Eng., vol. 105, no. 2, 2016.[5] M. E. Matters, C. B. Zoltowski, A. O. Brightman, and P. M. Buzzanell
to student success in engineering education,” EuropeanJournal of Engineering Education, vol. 42, no. 4, pp. 368–381, 2017.[5] M. Scheidt, A. Godwin, E. Berger, J. Chen, B. P. Self, J. M. Widmann, and A. Q. Gates,“Engineering students’ noncognitive and affective factors: Group differences from clusteranalysis,” Journal of Engineering Education, vol. 110, no. 2, pp. 343–370, 2021.[6] S.-M. R. Ting and R. Man, “Predicting academic success of first-year engineeringstudents from standardized test scores and psychosocial variables,” International Journal ofEngineering Education, vol. 17, no. 1, pp. 75–80, 2001.[7] B. F. French, J. C. Immekus, and W. C. Oakes, “An examination of indicators ofengineering students’ success and persistence
components ofspatial ability which may aid in the creation of more complete training.AcknowledgementsThis material is based upon work supported by the U.S. National Science Foundation underGrant No. 1712887. Any opinions, findings, and conclusions or recommendations expressed inthis material are those of the authors and do not necessarily reflect the views of the NationalScience Foundation.References[1] K. S. McGrew, “CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research,” Intelligence, vol. 37, no. 1, pp. 1–10, Jan. 2009, doi: 10.1016/j.intell.2008.08.004.[2] D. F. Lohman, “Spatial Ability and G.” 1993.[3] A. Ramful, T. Lowrie, and T. Logan, “Measurement of Spatial
system users andother practitioners. For example, the LSRM may enhance the CATME system by accuratelymodeling longitudinal social relations data, and thereby improving the evaluation of teamdynamics and identifying potential areas for improvement. Ultimately, this may help instructorsbetter support their students' collaborative learning experiences and foster a more inclusivelearning environment. ReferencesAgrawal, A. K., & Harrington-Hurd, S. (2016). Preparing next generation graduates for a global engineering workforce: Insights from tomorrow's engineers. Journal of Engineering Education Transformations, 29(4), 5-12.Alsharif, A., Katz, A., Knight, D., & Alatwah, S. (2022). Using
of communicating learning achievement since theearly 1900’s [1]. Despite grades having the very practical purpose of communicating our levelsof learning or performance achievement to both the learners and the educational system morebroadly [2], [3], when reflecting on the moments and instances in which we remember receivinggrades we likely don’t only remember the learning material or content. Intertwined with thesememories of receiving grades are likely emotional reactions - sometimes incredibly strong. Thejoy and pride of achieving a good grade, the disappointment or frustration with a bad grade, orthe anticipatory excitement or fear related to either preparing for a graded event such as an examor presentation, or even waiting for a grade