be for our students asfuture engineers.Professional preparation of engineers, as with the law, and medicine, necessitates the applicationof knowledge through an applied rehearsal in authentic learning situations. The clinic of law ormedicine is sometimes practiced as a capstone educational experience in fields of engineering.Having engineering students work together on a project is becoming a prominent pedagogicalapproach in upper-level engineering undergraduate courses and graduate courses. This directlysupports the professional practice and professional formation for many fields of engineering andaddresses many ABET student learning outcomes.A multiple case-study approach was used to apply and illustrate a “product”-based learningframework
Proceedings, New Orleans, Louisiana: ASEE Conferences, Jun. 2016, p. 26629. doi: 10.18260/p.26629.[2] H. Chaibate, A. Hadek, S. Ajana, S. Bakkali, and K. Faraj, “A Comparative Study of the Engineering Soft Skills Required by Moroccan Job Market,” Int. J. High. Educ., vol. 9, no. 1, p. 142, Dec. 2019, doi: 10.5430/ijhe.v9n1p142.[3] M. S. Rao, “Enhancing employability in engineering and management students through soft skills,” Ind. Commer. Train., vol. 46, no. 1, pp. 42–48, Jan. 2014, doi: 10.1108/ICT-04-2013-0023.[4] J. Dawson and S. Kuchnicki, “Experiences Of Using Formula Sae As A Capstone Design Project,” in 2010 Annual Conference & Exposition Proceedings, Louisville, Kentucky: ASEE Conferences, Jun. 2010, p. 15.555.1
University of Nigeria, Nigeria and the University of Cape Town, South Africa. Currently, His research focus is in the field of Computing and Engineering Education where he is involved with investigating team-based computational projects using qualitative, quantitative, and artificial intelligence-based tools. He is also involved with developing and redesigning a Team-Based transdisciplinary graduate course under the Purdue University EMBRIO Innovation Hub Grant project, where He has contributed by applying computational fluid dynamics methods in the development of partial differential equation (PDE) models to implement cell cytokinesis. His ongoing Ph.D. research broadly investigates teamwork interactions and
. However, as a pilot, the sample limited generalizability; thecurrent study addresses this limitation. We used a national cohort that included multipleengineering disciplines (biomedical, mechanical, chemical, electrical, computer, aerospace),types of formal design projects (e.g., first-year, design-spine, senior capstone) and institutiontypes, including private religious; Hispanic-serving; public land-grant; and research flagshipinstitutions (N=449). We report sample characteristics and used confirmatory factor analysis(CFA) to provide validity evidence, reporting the chi-square and standardized root mean squareresidual as estimates of fit. We report Cronbach’s alpha as a measure of internal consistency.We found that overall, the CFA aligned with
Quality Based on Team that could be useful for training Chinese engineers Spirit Training. Research in Higher working in the global context Engineering Education, (6), 103-108. Duan Guijiang, & Xu Shixin. (2012). Reported experience of an instructional team in the Improving students' teamwork ability by program Manufacturing Management Information reforming a capstone design course. Systems in reforming a mandatory capstone design course Research in Higher Engineering by integrating various team training tools and modules and Education, (1), 132-137. teamwork assessments Wan Baikun, Li Qing, Yang Chunmei, & Reported a course reform project in a biomedical
IKC Value rubric was used to code thestudent reflections. The results of the study demonstrated that living in the learning communityand studying the concepts of intercultural competence while interacting with students of diversebackgrounds allowed the students to develop interculturally. Also, engaging students in guidedreflection helped them to reflect on the intercultural skills that they developed through constantinteraction with peers that requires efficient communication among the team members. Similarly,in another study by Swartz et al. [13], students were challenged to collaborate internationally withstudents from three different countries during a 6-week project to increase their interculturalcompetency. The results of the study
offers a valuable framework for investigating various behaviors, it is importantto acknowledge its limitations in capturing the potential influence of power dynamics and otherconfounding elements. For example, power imbalances within a capstone engineering teamcould shape individuals’ behaviors in ways that extend beyond their personal beliefs, which maynot be fully captured by the RAA’s focus on individual beliefs and intentions. Similarly,contextual factors may influence behaviors in ways that are not adequately represented by theRAA. In the capstone engineering example, project complexity or time pressures could be suchfactors. To address these concerns, researchers could incorporate qualitative methods andcontextual factor measures, such as
graduate attribute definitionsoften miss crucial aspects of what this looks like for engineering practice. The authorsrecommend team- and project-based educational activities to foster lifelong learning orientations.It will be important to attend to alumni reflections on these types of learning activities and anyconnections to their lifelong learning orientations.Ford et al. [28] investigated the effects of capstone design project experiences on lifelonglearning during workplace transitions. They examined alumni from four institutions, focusing ontheir initial three months at work. Challenges often related to self-directed learning, which wasless emphasized in undergrad programs, as well as interpersonal interactions with colleaguesfrom different
at Iron RangeEngineering participate in a one-semester certification program called the Bell Academy wherethey gain training in the areas of technical learning, design, and professionalism. In addition tocompleting their technical coursework, they also complete a team design project with industryclients and participate in workshops to develop as engineering professionals. For their next foursemesters after the Bell Academy, they work full-time in engineering internships and co-opsaround the globe while continuing their technical courses remotely.During their senior year, students write six chapters, which result in a senior capstone paper.These papers have been used to assess student learning, as well as to measure ABETperformance indicators
-offexperiments and sprawling engineering projects. Notably, most capstone and cornerstoneexperiences fit the definition. However, the definition does insist on hands-on activities, so it isdesigned to exclude activities that are purely computer-based.Other works have other implicit definitions of laboratory activities. Some works center the ideaof constructivism in discussing laboratories, and argue that a laboratory activity is one thatprovides rich information for constructing knowledge [11]. Others simply lament the lack ofspecificity in defining laboratory activities [12].Consequently, categorizing laboratory activities or describing universal features of laboratoryactivities is a challenge. Fesisel and Rosa attempt to describe learning objectives
. He aims to help students improve intercultural competency and teamwork competency by interventions, counseling, pedagogy, and tool selection to promote DEI. In addition, he also works on many research-to-practice projects to enhance educational technology usage in engineering classrooms and educational research. Siqing also works as the technical development and support manager at the CATME research group.Amirreza Mehrabi, Purdue University I am Amirreza Mehrabi, a Ph.D. student in Engineering Education at Purdue University, West Lafayette. Now I am working in computer adaptive testing (CAT) enhancement with AI and analyzing big data with machine learning (ML) under Prof. J. W. Morphew at the ENE department. My
Chicago LegalForum, 1(8): 139-167.Davis, D., Trevisan, M., Gerlick, R., Davis, H., McCormack, J., Beyerlein, S., ... Brackin, P. (2010).Assessing team member citizenship in capstone engineering design courses. International Journal ofEngineering Education, 26(4), 771–783Douglas-Mankin, K. R. (2008). Assessment of student learning of design skills from a first semesterdesign project. Transactions of the ASABE, 51(6), 2249–2254.Edwards, B. D., Day, E. A., Arthur, W., & Bell, S. T. (2006). Relationships among team abilitycomposition, team mental models, and team performance. Journal of Applied Psychology, 91, 727–736.Fiegel, G. L., & Denatale, J. S. (2011). Civil engineering capstone design: Team formation, preparation,and performance
the Hokie Supervisor Spotlight Award in 2014, received the College of Engineering Graduate Student Mentor Award in 2018, and was inducted into the Virginia Tech Academy of Faculty Leadership in 2020. Dr. Matusovich has been a PI/Co-PI on 19 funded research projects including the NSF CAREER Award, with her share of funding being nearly $3 million. She has co-authored 2 book chapters, 34 journal publications, and more than 80 conference papers. She is recognized for her research and teaching, including Dean’s Awards for Outstanding New Faculty, Outstanding Teacher Award, and a Faculty Fellow. Dr. Matusovich has served the Educational Research and Methods (ERM) division of ASEE in many capacities over the past 10
. (2019, June). Intercultural competency differences between US And central asian students in an engineering across cultures and nations graduate course. In 2019 ASEE Annual Conference & Exposition.11. Sanger, P. A., Ziyatdinova, J., Kropiwnicki, J., & Van Nguyen, P. (2015, June). Changing Attitudes in Cross-Cultural Diversity Through International Senior Capstone Projects. In 2015 ASEE Annual Conference & Exposition (pp. 26-341).12. Ziyatdinova, J., Bezrukov, A., Sanger, P. A., & Osipov, P. (2016, June). Cross Cultural Diversity in Engineering Professionals—Russia, India, America. In 2016 ASEE International Forum.13. Imbrie, P. K., Agarwal, J., & Raju, G. (2020, October). Genetic Algorithm Optimization
culture has capital? A critical race theory discussion of community cultural wealth,” Race Ethnicity and Education, vol. 8, no. 1, pp. 69–91, Mar. 2005, doi: 10.1080/1361332052000341006.[5] S. Howe, S. College, and D. Kotys-Schwartz, “Research Methods for the Capstone to Work (C2W) Project”.[6] S. Sin, “Considerations of Quality in Phenomenographic Research,” International Journal of Qualitative Methods, 2010.[7] Appalachian Regional Commission 2022 Performance & Accountability Report, 2022,https://www.arc.gov/wp-content/uploads/2022/11/FY-2022-Performance-and- Accountability-Report.pdf[8] Lent, R. W., Brown, S. D., & Hackett, G., “Toward a unifying social cognitive theory of career and academic interest
that our perceptions of reality are socially constructed andthat by focusing on positive stories and experiences, particularly from people whose identitiesare marginalized, we can create a more positive reality in work and learning environments [4].Despite its prominence for over two decades, it is unknown to what extent APPI has been used inengineering education research. Further, there is limited to no evidence of utilizing APPI as aneducational intervention.1.1. APPI as a Research Methodology vs InterventionAs a part of an early-stage research project on evaluating the impact of asset-based practices inundergraduate engineering courses, we employed appreciative interviewing to elicit studentexperiences in applying their assets to projects
. IntroductionEngineering curriculum frequently focuses on technical, analytical, and decision makingknowledge and skills, evident by the common focus of courses on math and physics principles[1]–[3]. Course problem sets and projects routinely focus on determining variables and solvingequations where there is one “right” answer [4]. However, engineering work is inherently bothtechnical and social [5], [6]. To address major problems of today’s world, engineering studentsneed to develop contextual and cultural competencies, ethical responsibility, and socialengagement knowledge and skills, as well as the ability to work across disciplinary boundaries[7]–[10]. Engagement in these skills, which we collectively call “comprehensive engineeringknowledge and skills”, are
to be more efficient in my time management. It reallyhelped that our advisor gave clear weekly targets and expectations.One such experience about time management sticks out above the rest: there was a week when Iwas waist-deep in work on my Capstone project. I was tasked with 3D modeling a motor box fora rotating wire system. Creating the 3D models for this design ate up most of my time that weekand I still needed to get my responsibilities done for the research. To help get my work done thatweek I had to create a schedule for myself on which times I would allocate solely for research.Creating this schedule helped me be more on track for the tasks I had been assigned that week aswell as a continued time frame that I would always put towards
a necessity. This is especiallytrue in STEM disciplines, where students often need to work in diverse environments upongraduation. Studies have demonstrated that STEM students find it challenging to work with adiverse population. This is juxtaposed with the reality that over 50% of STEM employers preferto hire interculturally competent graduates. As such, national agencies and higher educationinstitutions have been urging STEM faculty to integrate intercultural competence into thecurriculum. Through this study, we intend to showcase the integration of interculturalcompetence concepts in a first-year cybersecurity classroom. The pedagogical framework for thecourse is project-based learning. The Intercultural Knowledge and Competence (IKC
participant, but they will also gatherpersonal documents and observe their actions to fully understand their experience. In the caseof education, narrative analysis can be used to understand a group of students' experiences in acertain class, project, or discipline.Kellam et. al's [13] study expands on Polkinghorne's [20] narrative analysis and analysis ofnarratives by testing three data synthesis methods specific to engineering education research.The first method, thematic analysis, is focused on interpreting data to produce themes relatingto the topic of interest. In this method, the researcher's themes are embedded throughout thepresentation of the narrative, providing the reader with a clear depiction of the researcher'sinterpretation. The second
classstructure and teaching practices allows researchers and instructors to determine how to augment aclass for a clearer and easier learning experience.There are many related articles that focus on at least one of the domains of learning for engineeringstudents; however, most have different focuses or are not directly applicable to this paper’sresearch. For example, many related studies were testing or creating a tool used to evaluate a class'sability to teach with one or more of the domains, versus testing how to better teach one or all ofthe domains or discover how students learn with each domain [8-13]. One of these studies createda teaching template for schools so they are more aware of what engineering students should learnduring their capstone
study created ateaching template for schools so they are more aware of what engineering students should learnduring their capstone research [15]. Another study tested the program EvalTOOLs 6 to determinehow well a class performed in connecting to each of the three domains and how it may be helpfulfor determining which domains need more development [13]. A related study tried to evaluateeach hierarchical level with an analysis of students’ grades [6]. Other studies attempted to developnew analytic tools to evaluate students learning with the cognitive domain [7], [14].Another related study focused on testing a few hierarchical levels instead of reviewing learningthrough all of the hierarchical levels of the cognitive domain [8]. One article