Paper ID #27623ABET Accreditation: Best Practices for A Systematic Coordinated Multi-Program ApproachDr. Petronella A. James-Okeke, Morgan State University Dr. Petronella James-Okeke serves as the Accreditation Coordinator for the School of Engineering, at Morgan State University (MSU), where she leads the 2019 multi-program accreditation process. Dr. James-Okeke previously served as the Assessments and Online Program, Faculty coordinator for the Department of Electrical and Computer Engineering. She teaches at the graduate and undergraduate level, using both face-to-face and blended online learning instruction. She is an
University.Dr. Kenneth A. Loparo, Case Western Reserve University Kenneth A. Loparo is the Nord Professor of Engineering in the Department of Electrical Engineering and Computer Science and holds academic appointments in the Departments of Biomedical Engineering and Mechanical and Aerospace Engineering in the Case School of Engineering. He has received numerous awards including the Sigma Xi Research Award for contributions to stochastic control, the John S. Diekoff Award for Distinguished Graduate Teaching, the Tau Beta Pi Outstanding Engineering and Science Pro- fessor Award, the Undergraduate Teaching Excellence Award, the Carl F. Wittke Award for Distinguished Undergraduate Teaching and the Srinivasa P. Gutti Memorial
blind review policy) has had a strong commitment to sustainability issues on the institutional level andby individual faculty in their research. In 2009 the Institute for Sustainability wasestablished to foster research and curriculum on diverse impacts of economics, scienceand technology, and social equity on sustainability. Its mission is to “promote, facilitate,and develop educational, research, and university and community programs related tosustainability.” The Institute is committed to serving our campus community byincreasing interdisciplinary and cross-functional communication, and supporting andaiding in the development and application of sustainability practices within the universityand community. In past years the Institute has
year program with emphasis on product development and corporate sponsorship and mentoring. He has also held leadership roles at HTC and Ericsson/Sony Ericsson. Greg is an established inventor and has filed over 80 patents. He also is co-author of the eBook ”A Reference Guide to the Internet of Things”. Greg holds an BS Electrical Engineering and MS Electrical Engineering from West Virginia University. His graduate research focused on Biomedical Engineering. c American Society for Engineering Education, 2019 Work in Progress: Industry-based Team Program Reviews for Capstone Design teamsIntroduction:Proper project management (PM) is a critical skill that will lead to success in senior designprojects
or through the NSF grant. The relationships that are establishedbetween the mentors and the undergraduate students are crucial in motivating the students to dotheir best work and to increasing their interest level in the pursuit of careers in research. Thefaculty mentors are expected to foster this relationship to a point where the mentor becomes apotential reference for the students and/or their advisors in graduate school.Appropriate Projects: The intellectual focus area of the REU site must match the targetapplicant pool. In the case of the IREECE program, the projects were selected to appeal to youngstudents. The projects were selected to cover a broad spectrum of areas, such that participantswere likely to find at least one area of
Carpenter and Raymond Hansen* {carpentera1, hansenr2}@wit.edu Dept. of Electrical and Computer Engineering *Dept. of Computer Science and Networking Wentworth Institute of TechnologyAs cybersecurity grows as a specialty within electrical and computer engineering and computerscience, students increasingly choose to pursue projects in the area. These projects come in theform of class projects, senior design/capstone projects, and extracurricular research of varyingdegrees of difficulty and sub-genres of cybersecurity. However, it is easy for these cybersecurityprojects to put students in danger of violating laws or compromising equipment; thus, it is
competency are reflected in curricular and student activities. His interests also include Design and Engineering, the human side of engineering, new ways of teaching engineering in particular Electromagnetism and other classes that are mathematically driven. His research and activities also include on avenues to connect Product Design and Engineering Education in a synergetic way. c American Society for Engineering Education, 2018 Designing a curriculum that helps students create connected narratives in electrical engineeringIntroductionThis paper proposes a framework for helping students construct conceptual narrative arcsthroughout a traditional Electrical Engineering
part-time students who were in no hurry to graduate, the Capstone Experience dragged on for up to five quarters.As part of our ongoing ABET assessment process and after several teams completed theprogram, we made some significant changes and these changes represent the CapstoneExperience as currently implemented. Three key changes were implemented: 1. The Capstone course was extended to two quarters. Capstone I is a two-credit course in which the students research the project and create a formal specification that must be approved by their industry mentor. Capstone II is a three-credit course in which the students actually build, debug and validate their design. Capstone II ends with a report, a
by trend line equation)For example, the change in sensor reading from 5 cmto 10 cm was much greater than the change in sensorreading from 30 cm to 35 cm. To account for the Figure 8.0 Sensor Output vs. Distance [cm]non-linear characteristics of the IR sensors thestudents needed to develop an approximate managerial and invaluable teamwork experiences.exponential curve that was best fit. To do so, The process of starting a research project and seeingstudents placed the host RC at different distances it through has many moving parts which the teamranging from 10 cm to 40 cm while measuring the was unfamiliar with but can now say they
graduating out of the major did not have necessaryexperience or knowledge in robotics. Using best practices in engineering education, the course transitioned from a lecturemodel to a project-based learning model that includes three blocks over a forty-lesson semester:block 1, introductory topics; block 2, robotics design and implementation; and block 3, mazecompetition. Each laboratory includes a brief fifteen-minute introduction to a fundamentalelectrical and computer engineering concept and 3.5-hours of hands-on application. For example,after learning how the average power of a system can be controlled via pulse-width modulation,students integrate motors into the robot and connect each motor to a modern measurement tool toobserve the
Geddis, Hampton University Demetris L. Geddis is an associate professor and Chair of Electrical and Computer Engineering at Hamp- ton University. He has extensive research experience in the areas of Integrated optoelectronics, Optics, Microelectronics, and Electromagnetics. He has worked as a Research and Design Engineer at Motorola and Bell laboratories. Also, he worked at NASA Langley Research Center as a NASA faculty fellow for the Nondestructive Evaluation Sciences Branch where he performed research in the area of optical fiber sensing for real time health monitoring of aerospace vehicles. Current research interests and publications are in the areas of Photonics, Optoelectronics, Microelectronics, Heterogeneous
, free of charge forstudents. Best practices of schematic design and board design were shared with the students asthey were encouraged to design PCBs for previous circuits that they had built.Intro to Python (Hardware and Software) LessonsThe first week of material consisted of a combination of the basics of Python programming andcircuits using CircuitPython and the Metro M0 Express microcontroller board. The programmingconcepts introduced included variables, operators, functions, conditional statements, loops, lists,and dictionaries. The students built upon these programming concepts and Python skills duringthe Machine Learning week. The circuit concepts included microcontroller pins, electroniccomponents, analog vs. digital, Ohm's Law with the
usuallyinvolves group work. Many of the engineering projects in the paper were group work. Engineersare now, more than ever, expected to collaborate and cooperate with their peers [17]. Futuredirections for integrating PBL in these courses include adding one more project that allowsstudents to design from scratch in Logic Circuits, and assessing whether the students who havebenefited from PBL will continue to be successful in their future courses.References:[1] Shekar, A. Project based Learning in Engineering Design Education: Sharing Best Practices, ASEE 120thAnnual Conference and Exposition, paper ID 10806, Indianapolis, IN, 2014.[2] Pang, J. Active Learning in the Introduction to Digital Logic Design Laboratory Course. 2015 ASEE Zone IIIConference
populations, teaching practices, and community college students. Her dis- sertation will be a Phenemological case study on community college students in a Research Experience for Undergraduate (REU) Program.Mr. Alireza Dayerizadeh, North Carolina State University Alireza received his B.S. in Electrical Engineering from the University of South Florida in 2015. His previous industry experience includes engineering roles at DPR Construction, Jabil, GE Aviation, and Stryker Communications. In the Fall of 2016, Alireza began pursing a PhD in Power Electronics at North Carolina State University. He is a recipient of the Electrical and Computer Engineering Department’s Merit Fellowship (2016) and the NSF Graduate Research
Chemical Engineering. He is a registered Professional Engineer in Tennessee. He has nineteen years of industrial experience in industrial process and product development in the detergent, paper, and packaging industries. He teaches capstone design, value engineering and engineering economy at the undergraduate level, and technical innovation and advanced engineering economy in the graduate Engineering Management program. His research interests include product development, technical innovation, entrepreneurship, and design. c American Society for Engineering Education, 2016 A Comprehensive Approach to Power Sector Workforce DevelopmentAbstractThe University
end-to-endproject where they start with simulation and work their way up to a populated hardware productthey can hold in their hand … especially one with surface mount parts. Local undergraduatestudents may be in this situation simply because of their choice of option area, and graduatestudents (particularly international) may have come from curricula that did not emphasis hands-on work, including practical issues associated with board layout, population, and testing. Thesehands-on opportunities are imperative for university educators that seek to graduate employablestudents.IV. ConclusionThis paper presented initial experiences and lessons learned with regard to the integration of awearable, wireless electrocardiograph design project into a
Paper ID #16754Developments in the Teaching of Engineering Electromagnetics for Improve-ment in Student Interest and UnderstandingMs. Lauren E. Donohoe, Department of Electrical Engineering at The Pennsylvania State University Lauren Donohoe received B.S. Degrees in both Electrical Engineering and Physics from the Pennsylvania State University in 2014. She is currently a M.S. student in Electrical Engineering at the Pennsylvania State University. During her graduate studies in electrical engineering, she researched and implemented teaching meth- ods to stimulate interest in students. She chose to perform education and
in Engineering Education (FREE, formerly RIFE, group), whose diverse projects and group members are described at feministengineering.org. She received a CAREER award in 2010 and a PECASE award in 2012 for her project researching the stories of undergraduate engineering women and men of color and white women. She received ASEE-ERM’s best paper award for her CAREER research, and the Denice Denton Emerging Leader award from the Anita Borg Institute, both in 2013. She helped found, fund, and grow the PEER Collaborative, a peer mentoring group of early career and re- cently tenured faculty and research staff primarily evaluated based on their engineering education research productivity. She can be contacted by email at
graduating in a major divided bythe number ever declaring that major [3, 4].At the professoriate level, the percentage of female faculty lags behind the percentages offemales obtaining PhD degrees in all engineering fields. ECE continues to have lowerpercentages of women than engineering overall. ECE ranks 17th out of 21 engineering disciplinesconsidered in the percentage of female faculty with 12% females compared to 16% forengineering overall [1]. The percentages of African American and Hispanic faculty are low butsimilar for ECE and Engineering as a whole at 3% and 4%, respectively. The percentage ofAsian American faculty is higher in ECE (31%) than Engineering (27%).Research has shown that the percentages of women undergraduate science and
Paper ID #31471Hands-On Cybersecurity Curriculum using a Modular Training KitMr. Asmit De, The Pennsylvania State University Asmit De is a PhD Candidate in Computer Engineering at PennState. His research interest is in developing secure hardware and architectures for mitigating system vulnerabilities. Asmit received his B. Tech degree in Computer Science and Engineering from National Institute of Technology Durgapur, India in 2014. He worked as a Software Engineer in the enterprise mobile security team at Samsung R&D Institute, India from 2014 to 2015. He has also worked as a Design Engineer Intern in the SoC Template
Paper ID #21291Bottlenecks and Muddiest Points in a Freshman Circuits CourseDr. Cynthia Furse, University of Utah Dr. Cynthia Furse (PhD ’94) is the Associate Vice President for Research at the University of Utah and a Professor of Electrical and Computer Engineering. Dr. Furse teaches / has taught electromagnetics, wireless communication, computational electromagnetics, microwave engineering, circuits, and antenna design. She is a leader and early developer of the flipped classroom, and began flipping her classes in 2007. She is now regularly engaged helping other faculty flip their classes (see Teach
of ASEE, IEEE, and ACM, and a member of several honor societies, including Tau Beta Pi, Eta Kappa Nu, Phi Kappa Phi, and Golden Key. Rabih has a passion for both teaching and research; he has been teaching since he was a teenager, and his research interests include wearable computing, activity recognition, and engineering education. For more information, refer to his website: www.rabihyounes.com.Cecil´e Sadler, Duke University Cecil´e Sadler is a first-year graduate student in Computer Engineering at Duke University and 2019 GEM Fellow. She is from Charlotte, NC and received a B.S. in computer engineering from North Carolina State University. In addition to her master’s coursework, Cecil´e assists her faculty
,” and the 2012 ASEE Mid-Atlantic Region ”Distinguished Teacher” Award. He teaches courses in both analog and digital electronic circuit design and instrumentation, with a fo- cus on wireless communication. He has more than 15 years experience in the development and delivery of synchronous and asynchronous web-based course supplements for electrical engineering courses. Dr. Astatke played a leading role in the development and implementation of the first completely online un- dergraduate ECE program in the State of Maryland. He has published over 50 papers and presented his research work at regional, national and international conferences. He also runs several exciting summer camps geared towards middle school, high
“significantly better learning outcomes than the traditionallecture/recitation approach”.In no field is the need for reform of educational practices more important than that of STEMcontent. Because of changes in K-12 education, STEM students are entering the collegeexperience with a background in hands-on constructivist learning; they are expecting and learnbest via hands-on technology supported, active learning. In addition, continued advances intechnology coupled with the needs surrounding a growing content base and real-world problemswithin STEM indicates that constructivist learning will best serve future professional demands.21st Century STEM graduates must be not only be well versed in today’s current content and © American
that have been attempted over the past two decades at asummer science camp for high school students. The most successful designs are showcasedalong with the teaching methodology that produced them. The project was designed to teachstudents about engineering research, teamwork, and electrical engineering principles. To assessthe outcomes, the journal papers written by the teams of high school students and feedback fromformer students who are now engineers were analyzed. The student’s papers show that everyyear the project resulted in a circuit that could at least produce sound. The students surveyedoverwhelmingly considered the project an influentially positive experience. Former studentsconsistently reported that the greatest impact was not
for anomaly detection. I worked on integrating machine learning algorithms on an embedded sensor systems for Internet of Things applications, which can identify anomalies in real time. Before joining ASU, I worked as Systems engineer for 4 years at Hewlett Packard Research and Development, Bangalore, India.”Erica S Forzani Forzani, Arizona State University Dr. Erica Forzaniis Associate Professor of Chemical Engineering Program as well as joint faculty in the MechanicalEngineering Graduate Program in the School for Engineering of Matter, Transport, and En- ergy at Arizona State University (SEMTE). Dr.Forzani also has a joint appointment with ASU’s Center for Bioelectronics & Biosensors (CBB) at The
has over 30 years’ experience in engineering practice and education, including industrial experience at the Tennessee Valley Authority and the US Army Space and Missile Defense Command. Her research inter- ests include Engineering Ethics, Image and Data Fusion, Automatic Target Recognition, Bioinformatics and issues of under-representation in STEM fields. She is a former member of the ABET Engineering Ac- creditation Commission, and is on the board of the ASEE Ethics Division and the Women in Engineering Division. c American Society for Engineering Education, 2020 Can ABET Assessment Really Be This Simple?AbstractWith the hard roll-out of ABET’s new outcomes 1-7 in the 2019
Paper ID #33260Service Learning Through RoboticsDr. Uma Balaji, Fairfield University Dr. Uma Balaji received her Ph. D from University of Victoria, B.C., Canada in Electrical Engineering. She was a Canadian Common Wealth Scholar. Her research focused in novel modelling techniques to de- sign components for wireless and satellite applications. Some of the components designed and fabricated by her include RF power amplifiers, antennas and filters. Another area of her research and teaching inter- est is Electromagnetic Compatibility (EMC). Prior to joining Fairfield, she is a recipient of the University Grants Award
in engineering, and applying their ownwriting and communication skills.Keywords—writing; writing studio; writing centerIntroductionThe call for engineering students to develop skills as writers and communicators has becomecommonplace. Engineering programs hear from their advisory boards and professionalorganizations of the importance of improving the written communication of their graduates[1], [2]. Educating students to become engineering writers, however, cannot happen in anyone course. Given the complexities of disciplinary writing and the number of audiences astudent will be communicating with once they enter the profession, a single course in writingis not adequate for students to develop as writers. Instead, research in writing studies
the Analog Discovery Board helped them learn. An increase of studentsexpressing interest in graduate programs and research was also noted [6].Expanding on the LiaB and Mobile Studio concept, we wanted to investigate the feasibility ofimplementing a similar structure at West Virginia University. What difficulties must beovercome with integrating into existing infrastructure? What resources are best situated for theuse of the TA? What effects does this method have on student learning outcomes? How dostudents’ respond to this approach?WVU LiaB SetupThe setup chosen for this pilot investigation included: Digilent Analog Discovery 2 Board, BNCAdapter Board, BNC Oscilloscope x1/x10 Probes (Pair), Shielded USB cable, and WaveForms2015 software [14