YoungScholars, the FREEDM precollege program has met its goal of instilling the students with anunderstanding of engineering careers. Furthermore, students who have participated in thisprecollege program have stated that they have gained more confidence in their future studies andthey believe that they can do well in college.Introduction Science, technology, engineering and mathematics (STEM) subjects are essential fields inthe United States due to the role they play at multiple levels of society, as well as their enormousimpact. Today, the STEM subject scope is expanding into STEAM, in which the A stands for art,and STEMM, in which the added M signifies medicine. The President’s Council of Advisors onScience and Technology (PCAST) report
Paper ID #11122Power Engineering Day-a way to attract high school students from underrep-resented groups to consider careers in electric powerDr. Lisa Shatz, Suffolk University Associate Professor at Suffolk University In Electrical Engineering. PI of NSF SSTEM grant, Electrical Engineering Scholars at Suffolk. Work with the Power Industry to put an emphasis on electric power in our curriculumDr. Timothy A Poynton, University of Massachusetts Boston Dr. Timothy Poynton is an associate professor in the Department of Counseling and School Psychology in the College of Education and Human Development at the University of
predict significantjob opportunities for graduates in the Energy Engineering profession due to energy economicsand the age of the current work force in the field. Surveys of members of the Association ofEnergy Engineers show relatively large numbers nearing retirement, an anticipated growth inemployment opportunities, and overall strong career opportunities(http://www.aeecenter.org/files/reports/2015EnergyManagementJobs.pdf ).At the university level, many graduates of chemical, electrical, mechanical, and otherundergraduate engineering disciplines specialize in energy through technical electives andresearch projects. There are also specialized degree programs, although they are somewhatlimited at the undergraduate level. Penn State’s Energy
scores, financial need status, involvement inextracurricular activities, recommendation letters, essay writing skills and whether the candidatewas from an underrepresented group in engineering. Each committee members’ rankings wereaggregated equally to figure out the overall student eligibility ranking.Finally, the candidates were contacted with official scholarship offer letters. The selection ofseven candidates whom all accepted the offers were realized in two rounds of selection cycle. Inorder to implement an evaluation plan with the purpose of measuring this project’s early impactin attracting and recruiting students for careers in nuclear related fields, a first semester intakesurvey of not only award candidates but their peers in the
engineering from Tennessee Technological University. Additionally, he has six years of industrial experience as a Senior Engineer and 18 years of academic experience as a professor, Associate Professor, and Assistant Professor. Foroudastan’s academic experience includes teaching at Tennessee Technological University and Middle Tennessee State University in the areas of civil engineering, me- chanical engineering, and engineering technology. He has actively advised undergraduate and graduate students, alumni, and minority students in academics and career guidance. Foroudastan has also served as Faculty Advisor for SAE, Mechanical Engineering Technology, Pre-engineering, ASME, Experimental Vehicles Program (EVP), and Tau
goal is to advance thefield of renewable energy by supporting renewable energy programs. Madison College serves asthe lead institution for CREATE, and has developed and delivered various types of facultyprofessional development programs in solar energy for over a decade [18].The need to build a renewable energy educational pipelineA major challenge to educating future renewable energy professionals, is the need to build aneducational pipeline. Since this is an emerging field, many potential young students havelimited knowledge of renewable energy career opportunities, and they lack professional rolemodels. Young adults with an interest in STEM have at least some awareness of what scientists,engineers, and health care professionals do, and many
offering graduate school research experience, improving students’ academicperformance and confidence, and having a lasting impact on their career paths2. Hirsch et al.suggested that their REU program could provide preparing undergraduates to be more capablemembers of their profession3. Further, it was found that most participants in a summer researchprogram in electrical engineering for minorities at Georgia Tech were either enrolled in graduateschool or were planning to enroll within the next two years4.Sores stated that Florida A&M University senior design projects used C-Stamp microcontrollersrather than topic-specific microcontroller for robot design. He also stated that C-Stampmicrocontrollers are more student-friendly and allowed
- uate and graduate courses in power electronics, power systems, renewable energy, smart grids, control, electric machines, instrumentation, radar and remote sensing, numerical methods, space and atmosphere physics, and applied physics. His research interests included power system stability, control and pro- tection, renewable energy system analysis, assessment and design, smart microgrids, power electronics and electric machines for non-conventional energy conversion, remote sensing, wave and turbulence, nu- merical modeling, electromagnetic compatibility and engineering education. During his career Dr. Belu published ten book chapters, several papers in referred journals and in conference proceedings in his ar- eas
the Ira A. Fulton Schools of Engineering in the School of Computing, Informatics and Decision Systems Engineering (CIDSE). Dr. Razdan has a BS and MS in Mechanical Engineering and PhD in Computer Science. He has been a pioneer in computing based interdisciplinary collaboration and research at ASU. He leads the Image and 3D Exploitation and Analysis (I3DEA) lab (http://i3dea.asu.edu) He is the Principal Investigator and a collaborator on several federal grants from agencies including NSF, NGA and NIH and DHS, US Army, USAID, and Science Foundation of Arizona. He has led or participated in over $25Million grants in his career. Anshuman has published extensively in refereed journals and conferences and is sought as an
expectations for this sector’s workforce, all ofwhich impacts the development and implementation of technician education programs. The needfor industry involvement and workplace-based learning also presents challenges for workforceeducators of any discipline.In addition to these factors, companies involved in the renewable energy sector are increasinglymultinational in scope; international corporations such as Abengoa, BP, First Solar, GeneralElectric, Hitachi, Hyundai, Iberdola, Mitsubishi, Nordex, Novozymes, NRG, Panasonic,Samsung, Sharp, Siemens, Trina, Vestas, and Yingli are just some of the influential globalleaders in this industry. As a result, professionals entering careers in the renewable energy fieldneed to be prepared for work in the
of the most important fields in engineering and science with profoundimpacts and many applications in other non-engineering fields. This course is a pre-requisite forseveral core courses in mechanical engineering as well as many elective courses. This is a vitalcourse for students’ degree completion and their overall career success. The author has utilizedsome modern and innovative pedagogical approaches in teaching Thermodynamics, includingflipped classes, active learning, research-based teaching [14], and integration of simulationsoftware tools [15-16] to help students with different learning styles.After implementing these approaches, particularly the flipped class model, and attending severalfaculty learning communities (FLCs) about
is to address needs of acommunity, it lacks these two essential components of service learning. On the other hand, servicelearning and internship are both related to practical experience and both can be on- or off-campuswith collaboration with non-profit, government, or businesses entities. However, they are differentsince the latter is not concerned with community needs and is focused mostly on skills studentsneed for their careers. Moreover, typically internships are standalone unit-bearing activities whileservice learning is just one of the pedagogical tools used by an instructor in a course.A major challenge for any service learning practice is the fine alignment between learningoutcomes for the course and community outcomes [5]. The
• the sharing of best practices in the content, teaching, certifications, articulation and career pathways for renewable energy technicians among participants and with their international peers • the use of an online learning collaborative site for knowledge-building activities and to share and disseminate curricula and other learning materialsGermany in particular presented an interesting case. The German Energiewende – or “energytransition” – is an on-going, nationally coordinated, comprehensive undertaking that has twofundamental drivers: the development and deployment of renewable energy sources and anincreased and widespread implementation of energy efficiency measures, all of which isoccurring in a relatively
which students discussed changes in their knowledge of sustainability,energy conservation, smart grids and/or renewable energy as a result of the course. Studentsalso discussed the perceived applicability of the course to their future careers or courseworkand their perspectives towards the active learning used during class. Structured observationdata depicting the nature of the in-class time will also be presented.Lastly, observations including a summary of what was successful versus not as successful arepresented. This “lessons learned” summary will include a plan to explore conversion to a“flipped” style course for the summer of 2019.IntroductionA course in power distribution engineering and smart grids is a unique and innovative approachto
, it is anticipated that the students will become moreaware of the greenhouse gas emissions, climate change, and the deleterious effects arising due todependence on foreign oil. Exposing middle, and high school students, and university studentsand their faculty to these topics will not only foster greater awareness but also generate increasedinterest in STEAM careers. It probably does not come as a surprise that the recommendationsmade by the National Academy of Engineering for transforming engineering curricula for thenew millennium echo that of the National Academy of Sciences and encourages sweepingchanges that promote the integration of life-skills and civic responsibility outcomes along withacademic outcomes as part of the overall
engineering education, workforce development and faculty professional development. As for the Impacts of Technology on Society, her technology-optimization focused research includes solar energy and digital manufacturing.Jennifer Brinker, Northeast WI Technical College Jennifer Brinker’s teaching emphasizes learning from real-life projects. She recognizes and teaches the importance of saving energy, money and the environment, along with meeting customer comfort and pro- duction needs. She holds a Master’s Degree in Land Resources and Energy Analysis and Policy from UW-Madison and achieved Certified Energy Manager (CEM) certification. Jenny has conducted hun- dreds of commercial energy audits since beginning a career in
for high school faculty to bring energy training into their classrooms, developing programming around emerging energy technologies, promotion of career awareness activities, and working on diversity challenges in the energy industry workforce. c American Society for Engineering Education, 2019 Managing a Multi-Institution Block Grant for Renewable Electricity Research1. BackgroundThe Renewable Development Fund (RDF) was originally established in 1994 by the State ofMinnesota. Funds are provided by Xcel Energy ratepayers in exchange for an allowance to storespent nuclear fuel from two nuclear generating plants in the state. The RDF funds are intended“to increase renewable energy market penetration
,communication protocol between protective relays and communication processor shouldbe taken into account as well as communication protocol to make connection between theSMART Grid Lab and the remote site over the Internet. This allowed me to learn moreabout communication protocols such as MODBUS TCP/IP. In addition, the XMPPprotocol was brought to the center of my attention as a reliable and securecommunication protocol for such applications as transmission line protection.Briefly, this project enhanced my knowledge about communication protocols as anintegral part of future smart grids. Moreover, it greatly enhanced my ability to set up sucha complicated system from ground up, which is very valuable for my future career in thiscompetitive world. It
an economist. Theteam membership also rotates, so each student gets to work with most of the others. At theend of each project, students evaluate each team member in terms of their contributions inability to work together, contributions, and their overall performance from starting with theMost Valuable Player at the top of the scale. While students can be somewhat uncomfortablerating others, it is explained that is a preparation for their future careers where honest andconscientious judgements of the performance of others is often required.A grade for each student is based upon the ratings of their classmates, and the instructor'sevaluations based on posters, presentations and reports. The results of the two methods areusually remarkably
power systems, in particular, electric machinery and electromagnetics. Robert has worked as a mathematical modeler for Emerson Process Management, working on electric power applications for Emerson’s Ovation Embedded Simulator. Robert also served in the United States Navy as an interior communications electrician from 1998-2002 on active duty and from 2002-2006 in the US Naval Reserves.Mr. Dekwuan Stokes, University of Pittsburgh Dekwuan is a senior electrical engineering major at University of Pittsburgh. He plans to enroll in the PhD program with a focus in power, as well as, achieve his MBA throughout the process. His career choice and long term goal is to become a professor and to start his own businesses
career. The survey results shown in black fontrepresent the first year and the ones in red font represent the second year. As can be seen inTable 5, there were 8 respondents in the first year and 13 respondents in the second year for eachquestion. Each survey question had a choice varying from Strongly Agree to Not Applicable. Inthe analysis, each of these options was given a weight ranging from 5 (Strongly Agree) to 1(Strongly Disagree). Not Applicable option didn’t have a weight factor. Question by questionanalysis of results are detailed in the following paragraphs. Table 5. Student Survey Results Strongly Strongly Not
26.1345.16Although the results do not indicate significant improvements in achievement on exams and labassignments with the flipped classroom, the instructor nonetheless found some positives in thismethod of instruction for the course. It enabled students to spend more time in the hardware lab,and five of the ten general comments about beneficial aspects of the course on the evaluationsurvey mentioned laboratory work. The hardware lab has modern equipment, which the studentslikely felt would help them in their future careers. Also, the lab environment was very excitingand dynamic, with much activity occurring, as the instructor and TA circulated among the teamsto assist them with various obstacles. The instructor believes the flipped method of
undergraduate and graduate courses in power electronics, power systems, renewable energy, smart grids, control, electric machines, instrumentation, radar and remote sensing, numerical methods, space and atmosphere physics, and ap- plied physics. His research interests included power system stability, control and protection, renewable energy system analysis, assessment and design, smart microgrids, power electronics and electric machines for non-conventional energy conversion, remote sensing, wave and turbulence, numerical modeling, elec- tromagnetic compatibility and engineering education. During his career Dr. Belu published ten book chapters, several papers in referred journals and in conference proceedings in his areas of