viable.For us, this starts with developing a community of support to give faculty the confidence toeffectively introduce wicked problems into their existing courses. Through this community,faculty may leverage one another’s expertise in order to expose students to real-world wickedproblems. In the spirit of holistic engineering education, our hope is to enable instructors toconfidently develop their students’ non-technical skills which are integral for generatingsustainability-minded leaders of the future.5,6Research MethodsIn this paper, our primary research objective was to develop a valid and reliable psychometricinstrument that measures a series of sustainability-related learning objectives that are central toWPSI. Our second objective was to
, he would not go so far as to say that the needs of society are overruled bythe needs of the individual or even in continuous conflict. Vygotsky’s observations stemmedfrom cultural change in Russia during his lifetime. He noticed change in what would then becalled the developmental learning pathways of individuals based on grand scale societal changes.Thus, the societal impetus was responsible for changing lifelong learning habits and the minds ofindividuals. In the engineering education community, many efforts are spent on developingphenomenographical approaches to problems, but almost none are spent on phenomenological orexistential approaches to problems. The issue at hand may be two-fold: first, phenomenographyas a research
recovery plans. In remarks by President Barack Obama on the AmericanGraduation Initiative, a top priority is to ensure that the U.S. has the highest percentage ofcollege-educated workers in the world.10 However, to make excellence truly inclusive, qualitymust drive commitment to college completion.3The implications of LEAP on the engineering and technology higher education community leadsto the following question: What is the purpose of liberal education and how should it permeateour curricula? Newman’s approach to liberal education is that of “enlargement or expansion ofthe mind,” a process in which university education helps students develop skills necessary forintellectual expansion.11 Heywood12 introduced the idea of engineering literacy being
other classmates, and participate in live feedback sessions.Internet-based learning also bears in mind students with various learning styles andphysical disabilities. There are many positive implications of internet-based learning suchas a means to interactively present and disseminate curricula through courseworkmanagement tools such as Blackboard. It also promotes collaboration and continuingeducation for full time employees, i.e. “learning anywhere, anytime.” 1 Students areencouraged to expand their knowledge of the material being taught through media,images, animation and streaming audio/video.Internet-based engineering education is an accepted practice throughout the United Statesand abroad. There are interesting ethical and societal
Paper ID #12743Pushing the Boundaries of Mass and Energy: Sustainability and Social Jus-tice Integration in Core Engineering Science CoursesDr. Donna M Riley, Virginia Tech Donna Riley is Professor of Engineering Education at Virginia Tech Page 26.1286.1 c American Society for Engineering Education, 2015Pushing the Boundaries of Mass and Energy: Sustainability and Social Justice Integration in Core Engineering Science CoursesAbstractMy presentation, part of a special session panel discussion on integrating social
textured examples of content found inthermodynamics courses, which elicit engineering students to engage, analyze, and reflect on acertain engineering science topic, drawing on scientific, personal, and social-scientific evidence.However, such resources that guide an instructor to integrate technical content with a complexsocial reality are certainly an exception rather than a norm.Reflective Practice versus “Best” PracticeWith this background in mind, we return to the question that began the former section: Whyattempt to humanize signals and systems? Or in other words, why attempt to guide students inlearning well-established technical concepts as integrated with a complex, value-rich, socialreality? These are questions that the reader might have
, become inherently about social justice.Interestingly, this separation of institutional locations where engineering science and research areallowed to live (and not to live) is reflected in NSF’s Research Experiences for Undergraduates(REU) program. Of the 640 REU sites currently listed, only 4 include community colleges(nsf.gov).The processes and people involved in this definition also influenced what went in theengineering curriculum and what stayed out. For example, Rolston and Cox argue that by takingthe “mind out of the shop” and into the university, engineering educators throughout the 20thcentury recreated a class division with significant social justice dimensions: “The shift in focus of engineering training from the job