Paper ID #39735Using a Framework to Define Ways of Integrating Ethics across theCurriculum in EngineeringDr. Laura Bottomley, North Carolina State University at RaleighCynthia BauerleLisette Esmeralda Torres-GeraldCarrie Hall ©American Society for Engineering Education, 2023 Using a Framework to Define Ways of Integrating Ethics across the Curriculum in EngineeringEthics are an important part of engineering and computer science education for many reasons,ABET accreditation being only one. Historically, engineering ethics have been taught as a part ofa specific class, often outside of the engineering
Paper ID #42120Navigating the Mystery: An Approach for Integrating Experiential Learningin Ethics into an Engineering Leadership ProgramDr. James N. Magarian, Massachusetts Institute of Technology James Magarian is a Sr. Lecturer with the Gordon-MIT Engineering Leadership (GEL) Program. He joined MIT and GEL after nearly a decade in industry as a mechanical engineer and engineering manager in aerospace/defense. His research focuses on engineering workforce formation and the education-careers transition.John M. Feiler, Massachusetts Institute of TechnologyLeo McGonagle, Massachusetts Institute of Technology Leo McGonagle
Paper ID #40015Redesign of an Engineering Failure Course to Incorporate LearningObjectives in Diversity, Ethics and InclusivityDr. Gary P. Halada, Stony Brook University Dr. Halada, Associate Professor in Materials Science and Chemical Engineering at Stony Brook Uni- versity, directs an interdisciplinary undergraduate degree program in Engineering Science. He designs educational materials focused on nanotechnology, advanced manufacturing and engineering adaptation for climate change. He also works with faculty from other disciplines to explore the integration of STEM and liberal arts education
Paper ID #43795Pedagogy of Engagement: Exploring Three Methods in an Engineering Ethicsand Professionalism CourseJessica Wolf, University of British Columbia Jessica Wolf is a PhD student in the Department of Mechanical Engineering at UBC. Her research focuses on equity issues in engineering education, particularly looking at the impacts of engineering outreach programs on historically marginalized groups in STEM.Gayatri Gopalan, University of British Columbia Gayatri Gopalan is a PhD student in the Department of Curriculum and Pedagogy in the Faculty of Education at the University of British Columbia. Her research
Michigan. Her educational research interests include conceptual understanding of electrical engineering concepts and assessing the impact of curriculum changes. ©American Society for Engineering Education, 2023 Incorporating Giving Voice to Values (GVV) into an Engineering Ethics CourseAbstractThe Department of Engineering and Society instructors at the University of Virginia recentlydeveloped a new course on Engineering Ethics aimed at second- and third-year students. Unlikeprevious courses in the department, the mid-level course emphasizes micro-ethics and employsthe Giving Voice to Values (GVV) framework. The emphasis on micro-ethics is timely andappropriate
computer science depend on persona and identity, it is critical that everyindividual working in this area have an acceptable level of ethical awareness and sensitivity, andthey must be able to make an ethical decision whenever they face an issue [2]. To achieve this,we need to teach computer and information ethics to students from undergraduate programs,along with theories and technologies in computer sciences. Recent research shows us that ethicseducation improves students’ ethical awareness and sensitivity as well as moral reasoning [3]–[4]. While many undergraduate computer science programs include ethics in their curriculum,the teaching methods, topics, target students, credit hours, and instructor expertise vary [5]–[8].There is an urgent
. Bowen, “Work in Progress: Undergraduate Student Perceptions of Macroethical Issues in Aerospace Engineering,” in 2023 ASEE Annual Conference & Exposition Proceedings, Baltimore, MD: ASEE Conferences, Jun. 2023. doi: 10.18260/1-2--44383.[24] E. A. Strehl, S. Olson, C. L. Bowen, & A. W. Johnson, “Work in Progress: Navigating Undergraduates’ Perspectives on Macroethical Dilemmas in Aerospace Engineering,” in 2024 ASEE Annual Conference & Exposition Proceedings, Portland, OR: ASEE Conferences, Jun. 2024.[25] A. Gupta, “A Practitioner Account of Integrating Macro-ethics Discussion in an Engineering Design Class,” in 2017 ASEE Annual Conference & Exposition Proceedings, Columbus
. Zhu, C. B. Zoltowski, M. K. Feister, P. M. Buzzanell, W. C. Oakes, and A. D. Mead, “The Development of an Instrument for Assessing Individual Ethical Decisionmaking in Project-based Design Teams: Integrating Quantitative and Qualitative Methods.” Presented at ASEE Annual Conference & Exposition, Indianapolis, IN, USA, June, 2014. 10.18260/1-2--23130[2] National Society of Professional Engineers. “NSPE Code of Ethics for Engineers.” NSPE.org. https://www.nspe.org/resources/ethics/code-ethics [accessed Jan. 4, 2023].[3] C. Moos, L. Dougher, L. Bassett, M. Young, and D. D. Burkey, “Game-Based Ethical Instruction in Undergraduate Engineering,” NEAG Journal, no. 1, pp. 20–37, Mar. 2023, doi
Paper ID #43999Research on Engineering Ethics Education in China’s Science and EngineeringUniversitiesDr. Huiming Fan, East China University of Science and Technology I am an associate professor from the Institute of Higher Education, East China University of Science and Technology. I got a Ph.D. degree from Zhejiang University in 2014. My research interest includes: engineering eduction research, university-industry collaboration.Xinru Li ©American Society for Engineering Education, 2024 Research on Engineering Ethics Education in China’s Science and Engineering
the top (14th) ”Best Undergraduate Engineering Programs” by US News Report (2023). With this unique vision, Olga has also served as the principal investigator since 2019 on a multi-year Kern Family Foundation KEEN (Kern Entrepreneurial Engineering Network) award titled ”Educating the Whole Engineer” to integrate important competencies such as virtues, character, entrepreneurial mindset, and leadership across the Wake Forest Engineering curriculum. She has led Wake Forest Engineering with a focus on inclusive innovation and excellence, curricular and pedagogical innovation, and creative partnerships across the humanities, social sciences, industry, entrepreneurs, etc. in order to rethink and reimagine engineering
, no. 2, pp. 343–351, 2004, doi: 10.1007/s11948-004-0030-8.[15] N. H. Steneck, “Designing teaching and assessment tools for an integrated engineering ethics curriculum,” in FIE’99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No.99CH37011, Nov. 1999, p. 12D6/11-12D6/17 vol.2. doi: 10.1109/FIE.1999.841685.[16] J. Borenstein, M. Drake, R. Kirkman, and J. Swann, “The Test of Ethical Sensitivity in Science and Engineering (TESSE): A Discipline Specific Assessment Tool for Awareness of Ethical Issues,” presented at the 2008 Annual Conference & Exposition, Jun. 2008, p. 13.1270.1-13.1270.10. Accessed
Computer Engineering (CpE), Electrical Engineering (EE), andMechanical Engineering (ME) programs and can be integrated into any academic program to fostercreativity while teaching strategies that promote ethical academic and professional behavior. Theeducational outcomes align with the EE department’s strategic goals and the university’s mission toprovide high-quality academic programs, as demonstrated below: 1. Students demonstrate ethical decision-making and embody the attributes of an engineering profession. 2. Students majoring in Electrical Engineering and Theatre collaborate to educate their peers in ethical awareness and moral values. 3. Students acquire cross-disciplinary lifelong learning skills.To assess the impact
justice and behavioral ethicsresearch are concerned with questions of right and wrong, until recently, the study of ethicalbehavior at work has focused on them as two distinct scholarly traditions. Discussing theimportance of linking the two, they stated [7]: The process theories of justice offer an important avenue for integrating behavioural ethics research. If fairness decisions are made through a series of cognitive steps, then there are a number of stages in which ethical considerations could intervene. (p. 891)In the case of engineering education, Rottmann and Reeve [6] identified “a long-lasting divisionbetween ethics and equity in engineering education” (p. 146) and framed it as the micro/macrodivide. While micro-ethics
, Associate Editor for Engineering Studies, and Executive Committee Member of the International Society for Ethics Across the Curriculum. Dr. Zhu’s research interests include global and international engineering education, engineering ethics, engineering cultures, and ethics and policy of computing technologies and robotics.Dr. Scott Streiner, University of Pittsburgh Scott Streiner is an Assistant Professor in the Industrial Engineering Department, teaches in the First-Year Engineering Program and works in the Engineering Education Research Center (EERC) in the Swanson School of Engineering at the University of Pittsburgh. Scott has received funding through NSF to conduct research on the impact of game-based
by some toexpand the established boundaries of life as defined include technological creations.Also, a topic of more recent interest: laboratory grown meat [29]. Although STS andother academic fields have begun to take an interest in non-human animals, the topic isthinly addressed in engineering ethics literature. And yet, as the primary source oflearning and training for aspiring engineers, engineering education has a responsibility toinclude in its curriculum ethical considerations of animal welfare in the development anddeployment of new engineered systems, and in existing engineering systems.Resources for a new engineering ethicsA good place to introduce engineering students to the idea of engineering with a focus onethics and animals
opportunity for the agency to gather insightsfrom experts in an array of fields, and it also challenged NASA participants to consider how theymight introduce the ideas shared to colleagues who could benefit from and apply these insightsdirectly. Some of these challenges have been long discussed by the engineering ethicscommunity: at what level are engineers responsible for their products? How can projectmanagers and engineers effectively integrate societal considerations in workaday efforts? Otherswere more unique to the Artemis mission, including space sustainability, balancing access tolocations on the moon, and sharing the benefits of space activities. 3. Workshop Concepts in Dialogue with Engineering Education and Ethics ResearchAs stated
traditions, folklore, and historical narratives. For instance,an AI-driven platform could transcribe and translate indigenous stories into written form. Long-term ethical education can also serve as a perennial concept. Rather than a one-time ethicsworkshop, integrate ongoing ethics education into AI courses. For instance, students could explorecase studies related to indigenous knowledge and AI.Furthermore, collaboration should be achieved with local communities, linguists, and educators toensure that AI systems are culturally sensitive. Regularly update algorithms to reflect evolvingcultural norms. Moreover, AI tools that facilitate the documentation and dissemination ofindigenous knowledge should be developed. In addition, involving community
, MA from Katholieke Universiteit, Leuven, and BA from Fordham University.Dr. Scott Streiner, University of Pittsburgh Scott Streiner is an Assistant Professor in the Industrial Engineering Department, teaches in the First-Year Engineering Program and works in the Engineering Education Research Center (EERC) in the Swanson School of Engineering at the University of Pittsburgh. Scott has received funding through NSF to conduct research on the impact of game-based learning on the development of first-year students’ ethical reason- ing, as well as research on the development of culturally responsive ethics education in global contexts. He is an active member of the Kern Engineering Entrepreneurship Network (KEEN
and better communicate to students how all engineering decisions should be madewithin the broader moral landscape, as opposed to a select few decisions. An engineeringeducation integrated with ethics as a way to make longer-lasting systemic change [13], [12].Incorporating experiences such as community outreach and guest speakers helps, in part, toframe an education in the ethical issues beyond the workplace [16]; however, this is just anextension, albeit a very valuable one, of the current education strategy. More recent papershave proposed game-based learning experiences, or ‘playful learning’ as a way for students toimmerse themselves in ethical issues and consider them from new perspectives [9], [8]. Thesestrategies provide an alternative