achieve a sustainable world, and to raise the global quality of life 1,2.A path for accomplishing this major reform in education and pre-licensure experience in theengineering profession is further described by Walesh 3. Furthermore, longstanding ethicalcannons of engineering practice require that civil engineering graduates serve the profession andsociety as principled leaders 4. To prepare students to meet an increasing demand forprofessional skills in the engineering profession, undergraduate programs are responding throughmodification of academic curriculum material and course content 5. The American Society ofCivil Engineers published an expanded set of 24 civil engineering outcomes in the CivilEngineering Body of Knowledge for the 21st
Paper ID #13734Implementation of an Undergraduate Engineering Curriculum to Prepare21st Century LeadersMs. Katherine Agnew Trevey, Marquette University Ms. Trevey currently serves as the Director of Engineering Leadership Programs in the Opus College of Engineering at Marquette University. She has more than 10 years of experience creating leadership development programs for undergraduate students. In early 2014, she was hired to run the newly created E-Lead Program (a three-year people-focused, technical leadership program offered to undergraduate students in the College of Engineering). Her responsibilities include
to lead outside the formal curriculum AbstractLeadership has historically been part of professional engineers’ work life, but until recently itwas not integrated into the formal engineering curriculum. With the support of the NationalAcademy of Engineering and Engineers Canada along with regulatory pressures from theAccreditation Board for Engineering and Technology and the Canadian EngineeringAccreditation Board, committed engineering educators with ties to industry have begun to takeup this curricular challenge in greater numbers. Unfortunately, many of these programs touchonly a small segment of the student body because they remain on the periphery of engineeringfaculties. As a result, we know little about the
. This is a very important point to emphasize, especially for engineeringstudents who are drawn to quantitative data and who tend to be less comfortable with qualitativedata and analyses. Hence, this “set up” for a discussion on analyzing the stories they receivedfrom their respondents is critical to a successful implementation of this exercise. Otherwise,students will take the “path of least resistance” and base most of their paper on the quantitativeassessments described below.When I introduce this phase, I spend a few minutes describing how strengths are holisticallydefined in this exercise (summarized on a PowerPoint) 16. Strengths are an integration of our (a)self-identities, which is how we express ourselves in a given situation, (b
product development in an engineering context, with an industry- based project, and integrated leadership labs. Incoming students have an average of five years of industry experience.Iowa State Iowa State University offers university-wide Certificates and MinorsUniversity (2009) in Leadership. These include a series of linked 1-credit courses, a project and leadership electives. Engineering students have access to both, and take the same core courses but have engineering specific leadership course electives. Leadership is also explicitly integrated into the graduate attributes of the Construction Engineering program.Southern SMU’s
face of constraints or obstacles, resourcefulness and flexibility, trustand loyalty in a team setting, and the ability to relate to others”8 (p.1). The CDIO Syllabusdefined engineering leadership as “the role of helping to organize effort, create vision, andfacilitate the work of others” (p.68)9. It is clearly stated that leadership is not orthogonal tothe remainder of the engineering curriculum, but rather there is an extensive amount ofoverlap between leadership skills and the other engineering skills9. More studyoperationalized leadership, change, and synthesis within the context of engineering education,it may help to define learning outcomes and competencies for engineering leadershipprograms3,10.Some research grouped three main themes
five courses,attend a leadership seminar series, and complete an international work-based, research-based orstudy-based experience. The minor courses are taught by faculty in the College of Engineeringincluding in-house communications faculty; the School of Public Policy; the Institute’sLeadership Education and Development (LEAD) Program, and executive-level engineeringpractitioners. The pedagogy model integrates leadership instruction into the broader context ofglobal societal grand challenges such as water availability and quality, air quality, urbanization,megaprojects, disasters, transportation, cities and sustainable development. A number of courseshave embedded study abroad experiences to foster global awareness, cross-cultural
in a curriculum underconstant pressure to cover broadening technical fields. Often these leadership courses areoffered as options on top of existing requirements, resulting in students taking additional credits,at significant cost to them. The Engineering Leadership Development (ELD) Program at Penn State University hasoffered an 18 credit minor in Engineering Leadership Development for over 20 years, with over600 graduates. While approximately two times that many students have benefitted by takingcourses in engineering leadership during that period, it still represents a fraction of the more than20,000 who have graduated from the College of Engineering in the same time span. Further,anecdotal evidence has shown that, while many
instruments (HPLC, UV,TOC,GC, KF—etc.) and also monitoring drug shelf life through both accelerated and shelf life stability programs. After which started at GlaxoSmithKline Beecham Egypt in which i was a laboratory senior analyst an- alyzing all dosage forms as finished products dealing with all laboratory instruments with very good experience on HPLC and GC in addition of GLP and GMP knowledge, SOP writing and audits carry out internally then i was promoted to a section head of validation and quality assurance for the pharmaceuti- cal industry for both Lactam and non-Lactam areas in which i was responsible for sterile and non-sterile areas qualification, validation and periodic verification dealing with process
educationprogramsStudents understood the importance of being technically competent as an engineering leader,however they had a lower confidence in their own technical leadership abilities. This gap Page 26.1424.10emphasized the importance of integrated learning within the engineering curriculum.Providing students with integrated engineering leadership experiences directly within thetechnical curriculum would allow the necessary leadership skills to be gained concurrentlywith an understanding how these skills will apply to an engineering career.Future DirectionsThe methods and results used in this pilot study will be applied to a variety of
Challenge. Particularly, participants prominently improved theirencouragement skills. Only the Challenge attribute displayed divergent improvements.Introduction Leadership traits are not always emphasized in the engineering curriculum of highereducation institutions. Once in college, if a student starts an engineering program, leadershipopportunities are typically only available through extracurricular activities or internships1. This islargely because traditional engineering programs are not able to accommodate specific coursesthat foster leadership traits in their degree plan. This lack of curriculum integration can often beattributed to the topic’s perceived complexity and the growth in the number of required corecourses that subsequently
experiences into the curriculum. Leadership strategies that may feel uncomfortable to undergraduate students will become increasingly relevant as they gain experience with organizational contexts outside of the university classroom, but it can be overwhelming for them to wait until they leave university to learn these skills. Two historically popular strategies for integrating workplace learning into engineering education are semester long co-op terms and 16-month internships. If these two options are not feasible in a particular institutional Page 26.1519.12 context, it is possible to infuse meaningful experiential
, the paper identifies biographicalinformation common to those who appear to be most engaged in the topic and compares it toexisting national faculty profiles. These findings are augmented through national survey ofengineering faculty. The survey investigated faculty perceptions on the importance ofengineering leadership development and the manner faculty think these materials should beincorporated in engineering curricula. These perceptions are investigated with respect toparticipant’s backgrounds and experiences outside the academy. This work will be of interest toboth faculty building commitment for and materials supporting integration of engineeringleadership in the curriculum and the engineering leadership profession.IntroductionMany of
apply to early career engineers.Another study from the leadership literature presents helpful perspectives on the practice ofengineering leadership. Alvesson and Jonsson (2016) conducted an in-depth single case study ofa middle manager in a large, international manufacturing company, completing ten interviewsand eight observations of the manager in meetings [8]. Their findings challenge the dominantperceptions of leadership in the literature which are based on “assumptions of coherence,integration, context and direction” (p.13). Instead, the researchers found fragmentation betweenthe manager’s leadership ideas and practice, with noticeable differences between espousedleadership meanings and their actual use in practice [8]. This paper adds
from a Student Perspective?AbstractThis paper investigates student perceptions of the relationships between social media,engineering, and leadership. Participants in this study consisted of freshmen engineeringstudents enrolled in a first-semester introduction to engineering course at the University of SouthCarolina. A grounded theory approach was used, in which instructional activities and datacollection processes occurred concurrently, were guided by one another, and developed over thecourse of the study. The phrase “social media engineering leadership” is developed within thispaper to include social media mediated communication within an engineering leadership context.The results of this study suggest that social media engineering