Page 25.848.1 c American Society for Engineering Education, 2012 Introducing Systems Engineering Concepts in a Senior Capstone Design CourseAbstractSenior capstone design projects can often expand in complexity to include systems of systems,particularly in projects involving embedded systems to control a larger system. Principles ofSystems Engineering (SE) can be integrated into the capstone course to help students—who maynot have been exposed previously—manage this increased complexity.This paper presents an evolving framework of essential SE fundamental elements, including thetop-level processes of Requirements Analysis, Functional Analysis and Allocation, Design orSynthesis
applying it as a change agent.Students had to produce an integrating final project in one semester (around 18 weeks), andboth students and instructors pointed out that, at the end of the whole degree program,students were not ready to undertake a high caliber project which incorporated much learning,skills, and professional attitudes.Responding to that problem, the university introduced a Capstone Course in systemsengineering in the mid 1980s. It came in the next to last semester of the program, just beforethe student thesis and graduation. Lasting 17 weeks, the course required students to developan intervention for improvement in an administrative system, aimed at integrating andapplying methods and skills learned along the way. Thus students
AC 2012-4043: IMPLEMENTATION OF A MULTI-DISCIPLINARY SYS-TEMS ENGINEERING CAPSTONE DESIGN COURSE AT THREE PUERTORICAN UNIVERSITIESDr. Michele Miller, Michigan Technological University Michele Miller is an Associate Professor of Mechanical Engineering at Michigan Technological Univer- sity. She teaches classes on manufacturing and does research in engineering education with particular interest in hands-on ability, lifelong learning, and project-based learning.Dr. John K. Gershenson, Michigan Technological UniversityProf. Amilcar Alejandro Rincon-Charris, Inter American University of Puerto Rico, Bayamon Amilcar A. Rincon-Charris was born on Barranquilla, Colombia, 1976. He will receive a Ph.D. in con- trol and robotics
easilybe a subset of the definition used in this paper.Using systems engineering concepts for a project or component to a course in the education ofundergraduate as well as in pre-college education has been reported. A systems engineeringapproach was applied to a BSEE program3 that used a tailored systems engineering process in acapstone course to increase the possibility that students developed desired ABET-relatedoutcomes within their design experience. A systems engineering and management process4 was Page 25.12.3successful in achieving program goals by aligning capstone course assignments to a decisionmaking process and incorporating a real
AC 2012-3821: INTEGRATING PROJECT MANAGEMENT, LEAN-SIXSIGMA, AND ASSESSMENT IN AN INDUSTRIAL ENGINEERING CAP-STONE COURSEDr. Ana Vila-Parrish, North Carolina State University Ana ”Anita” Vila-Parrish is a Teaching Assistant Professor and Director of Undergraduate Programs in the Edward P. Fitts Department of Industrial and Systems Engineering.Dr. Dianne Raubenheimer, Meredith College Page 25.803.1 c American Society for Engineering Education, 2012 Integrating Project Management & Lean-Six Sigma Methodologies in an Industrial Engineering Capstone CourseAbstractThe ability to
in which capstone design courses differ between engineering programsis the type of design project students complete. There has been a recent trend for engineeringprograms to partner with industry to provide capstone design projects direct from the “realworld.” In 1994, industry projects accounted for approximately 59% of capstone design projectsin surveyed engineering programs, compared to 71% in 2005.4,8 Not only do these projectsenrich students’ appreciation of educational relevance, but they are also beneficial in establishingindustry ties to programs and encouraging faculty professional development.3 Industrysponsored projects present a number of drawbacks, however, including difficulty in findingprojects, determining an appropriate
their requiredmajor courses. In the junior year, disciplinary grounding in a student’s major continues whiledisciplinary grounding in the other major (ECE for SYS majors, SYS for ECE majors) tapers off.The tapering is due to an increased focus on integration in the junior year. The focus of thejunior year is two LEP classes (one each term) in which teams work to design and build actualsystems. Finally, in the senior year, students continue to concentrate on integration whilecompleting capstone projects designed specifically for LEP teams.Purpose/need and critical reflection are incorporated into the LEP curricula through the LEPLearning Community. The LEP Learning Community meets every two weeks for one hour withgoals of developing a sense of
MENG 4018, Thermo II ENGR 3500, PM survey Outcome assessed with student work samples Outcome assessed in capstone project evaluation Program Outcome a) …apply knowledge
architectures and solutions without due analysis of alternatives (AoA), a lack of multi-disciplined decision making, poor documentation and configuration control, et al. Furtheranalysis indicates these factors are symptomatic of a much larger competency issue traceable toengineering education - the lack of a Systems Engineering fundamentals course. Ideally, a coursetaught by seasoned instructors with in-depth industrial experience acquired from a diversity ofsmall to large, complex systems.To meet program accreditation requirements, industrial needs, and remain competitive, collegesand universities institute a Systems Engineering course or capstone project based on SEprinciples and practices. However, the outcomes of these projects tend to focus on
25.800.14Research ProjectsBenefitsStudent research projects involve students in empirical observation and the use of currenttechnologies and also motivate them to apply their learning to address topical questions. Kuh1(2008) notes that such projects based on investigation and research can be used to connectconcepts and questions that arise over the duration of a course. They need not be limited toupper-level or capstone courses.Such projects can be beneficial to faculty as they are assisted in their own research (Moore26,2008). Additionally, research by students stands them in good stead to help them to be admittedinto graduate school; the experience is useful in boosting their performance in graduateprograms. Russell et al27 (2007) note how undergraduate
Professor at the University of Texas, Arlington, where she teaches courses and conducts research related to air quality and sustainable energy. Her research has been spon- sored by the National Science Foundation, Texas Commission on Environmental Quality, Luminant Power, and the Defense Advanced Research Projects Agency. She has published more than 60 peer- reviewed papers and conference proceedings. In 2010, she received UT Arlington’s Lockheed Martin Excellence in Engineering Teaching Award. She is a registered Professional Engineer in the state of Texas.Dr. Yvette Pearson Weatherton, University of Texas, Arlington Yvette Pearson Weatherton received her Ph.D. in engineering and applied science (environmental engi
Rules andProcedures in June 2011.The following changes are required: A stronger statement of the knowledge profile An expectation that graduates will be able to operate close to the frontiers of knowledge in their discipline An expectation that graduates have the capability to research rather than just investigate problems, and this is not to be at the expense of an integrating design-based capstone project An expectation that students are exposed to the practice (non-theoretical or codified) knowledge being applied within day-to-day practice in their discipline A stronger comprehension of contextual knowledge and the ability to apply that knowledge, e.g. in relation to design The ability to apply ethical
industry experience in the design and development of electro- mechanical systems. As a tenure-track faculty member of the UDM Mechanical Engineering Department, he has adopted a program of instruction that UDM has branded ”Faces on Design,” in which student project work is made more meaningful as students have the opportunity to see and experience the faces of real live clients. In the series of design courses he teaches, students design mechanical devices for use by disabled clients. In addition to academic work, Kleinke is a registered Professional Engineer and conducts seminars on innovation that are tailored to the needs of automotive engineers. Kleinke’s recent publication, ”Capstones Lessons to Prepare Students
ComputingPhysics I Operations/Production ManagementPhysics II Project Management Page 25.1384.6Chemistry I Quality ManagementAccounting Capstone DesignFigure 4. Percent Requiring Engineering Management Courses 100 90 80 70 60 50 40 30 20 10 0 Figure 5. Percent Requiring Business Topics100 90 80 70 60 50 40 30 20 10 0 Economics Accounting Marketing Law Finance
engineering, the workdoes provide insight into what is important in the discipline and can serve as a guide toundergraduate curriculum developersBackgroundGRCSE is built on an holistic interpretation of curriculum as concerning the total context inwhich education is provided, and as such the recommendations address five primary areas of asystems engineering program:5 1) student entrance expectations; 2) a curriculum architecture comprised of: a. preparatory material, b. a core body of systems engineering knowledge (the CorBoK), c. domain or program-specific knowledge, and d. a capstone experience; 3) outcomes every graduate should achieve; 4) objectives every graduate should achieve three to five years
normally presented in the class and a written report is submitted.Students are required to summarize the procedure used to produce the product and represent theoutput. There are usually two projects given in the class. The first project is defined by theinstructor, which helps maintain a focus on course and curriculum objectives. In the secondproject, students are allowed to pick their own topic, which gives them the autonomy to choosetheir own project formulations and strategies, which in turn increases their motivation.Project based learning at the individual course level is familiar in engineering education. It isused almost universally in capstone design and laboratory courses. There has been growingfrequency of project based learning approach