Paper ID #14717An Asynchronous Course/Laboratory Development for Automation ControlsDr. Cheng Y. Lin P.E., Old Dominion University Dr. Lin is a Professor and Program Director of Mechanical Engineering Technology at Old Dominion University. He received his PhD of Mechanical Engineering from Texas A&M University in 1989, and is a registered Professional Engineer in Virginia. Dr. Lin has expertise in automation control, machine design, CAD/CAM, CNC, geometric dimensioning and tolerancing, and robotics. He has been active in the technology application research and teaching training courses for the local industries and
with faculty from his alma mater.Prof. Bradley C. Harriger, Purdue University, West Lafayette Brad Harriger has over 30 years of experience teaching automated manufacturing and has authored/co- authored several related articles. Professor Harriger has served in several leadership roles with Society of Manufacturing Engineers and the American Society for Engineering Education, and is a founding mem- ber of an international Aerospace Automation Consortium, serving on its steering committee for several years. He has invested over twenty-five years in the development and maintenance of a multimillion dollar manufacturing laboratory facility complete with a full scale, fully integrated manufacturing sys- tem. Professor
Paper ID #16366An Introductory Laboratory In Power Engineering Technology: A SystemsApproachDr. Matthew Turner, Purdue University, West Lafayette Dr. Matthew Turner is an Assistant Professor of ECET at Purdue University New Albany where he teaches courses in power systems and controls. Prior to joining the faculty at Purdue, Professor Turner worked as a researcher at the Conn Center for Renewable Energy Research in the area of power and energy systems, with a focus on smart grid implementation and computer modeling. Dr. Turner’s current research concentrates on demand response technologies and the application of novel
Paper ID #16186Developing an IP-Based Industrial Process Control Laboratory for Use in aDistance Education EnvironmentDr. John Pickard, East Carolina University Dr. Pickard is an Assistant Professor at East Carolina University in the College of Engineering and Tech- nology. He teaches undergraduate and graduate Information and Computer Technology (ICT) courses within the Department of Technology Systems. Dr. Pickard plays an active role in building positive and sustainable industry relationship between the college, local businesses, and industry partners. Current industry recognized certifications include; Cisco Certified
yet very inexpensive experiment can be usedto teach fundamental concepts of PID controller design, leading to an intuitive understandingbased in theory and design. The experiment presented herein is currently being updated toinclude frequency domain analysis and design to complement the time domain analysis anddesign.Bibliography1. KTH Royal Institute of Technology, “LAB-1: PID Control,” http://www.kth.se/polopoly_fs/1.202554!/Menu/general/column-content/attachment/lab1_11apr.pdf.2. LiU, Dept. of Electrical Engineering-Automatic Control, “PID-Control and Open-Loop Control,” Oct. 2011, http://www.control.isy.liu.se/student/tsrt03/files/pidpmenglish.pdf.3. J. P. Thrower et al, “PID Control Laboratory Experiments Manual: Basic Experiments
Paper ID #14584A Building-Block Approach to Industrial Controls Laboratories Using Pro-grammable Logic ControllersProf. Robert J. Durkin, Indiana University - Purdue University, Indianapolis Mr. Durkin teaches courses in Mechanical and Electrical Engineering Technology; including the capstone design and independent study projects. He serves as a Faculty Senator and earned the 2013 Outstanding Teacher Award. He has over 25 years of engineering and manufacturing experience including; design, project management, and various engineering, research and manufacturing leadership roles. He has been awarded two US patents. He is an
to best connect innovation in teaching with the creation ofvalue in learning is a challenging one to all educators. The introductory materials course for themanufacturing and mechanical engineering technology degree programs at the campuses ofPurdue University gives an overview of properties, processing, and applications of polymers,composites, and non-traditional materials commonly used in industry. Students develop problemsolving skills through practice in the areas of materials selection, evaluation, measurement,testing and processing. Beginning in 2014, multiple innovations have been applied to thismaterials course at different campuses to address the needs of learners ranging from traditionalfull-time residential students coming
Implementation of a Mechatronics Learning Module in a Large First-Semester Engineering Course. IEEE Transactions On Education, 53 (3), 445-454.7. Durfee, W. K. (2003). Mechatronics for the masses: a hands-on project for a large, introductory design class. International Journal of Engineering Education, 19 (4), 593-596.8. McLurkin, J., Rykowski, J., John, M., Kaseman, Q., & Lynch, A. J. (2013). Using multi-robot systems for engineering education: Teaching and outreach with large numbers of an advanced, low-cost robot. Education, IEEE Transactions on, 56 (1), 24-33.9. Nedic, Z., Nafalski, A., & Machotka, J. (2010). Motivational project-based laboratory for a common first year electrical
been responsible for monitoring industry trends and developing technology solutions that serve to enhance both teaching and learning. Prior to her appointment at Florida Gulf Coast University, Mrs. O’Connor-Benson managed end-user technology systems and services at Brookhaven National Laboratory, a multipurpose research institution funded primarily by the U.S. De- partment of Energy’s Office of Science. Located on the center of Long Island, New York, BNL is a cutting-edge large-scale facility for studies in physics, chemistry, biology, medicine, applied science, and a wide range of advanced technologies. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 4,000
his DSc in structural engineering at Washington University, St. Louis. As asso- ciate professor at Purdue University Calumet, he headed the department of Manufacturing Engineering Technology. He went on to become the dean of the College of Technology at the University of Houston Then he moved to Oregon Tech to become the president of OIT. He maintains his professorship but has been retired from the presidency since 1998. Industrially Wolf has been an engineer with Chevron, Mon- santo, McDonnell Douglas, and Boeing, and a visiting scientist in residence at the Brookhaven National Laboratory. He teaches mechanical design and takes active interest in product lifecycle management soft- ware, including CATIA in full
manydifferent approaches proposed to improve statistics curriculum for engineering students. Bartonet al3 developed a laboratory-based statistics curriculum. Standridge et al25 did similar work.Bryce used data collected by students in his introductory engineering statistics course4. Levine etal16 used Microsoft Excel and MINITAB in their book to teach applied statistics to engineers andscientists. Zhan et al30 proposed to apply statistics in several courses in the curriculum instead ofhaving a separate applied statistics course within the curriculum. They found that applyingspecific statistical analysis methods in appropriate courses was an effective way for students tolearn to use statistics.Based on these findings, several laboratory exercises were
state that the number of expectedenergy related green jobs is expected to increase by 11% by 2018, and most of that growth isexpected to be in the environmental or energy related sectors [9-10].Edgar Dale’s cone of learning shows that participating in discussions or other active experiencesmay increase retention of material by up to 90% [11]. Richard Felder and Linda Silvermanrecommend several teaching techniques to address all learning styles, one of which is to providethe students with demonstrations that address sensing and visual learning styles, and hands-onexperiments for students with active learning styles [12]. According to Moore [13], there is adirect correlation between in-class performance, laboratory attendance, and performance
addition, online coursesettings allow students to learn the course materials at their own pace without being forced tofollow the pace of the instructor or the class [4-6].Although online education has its own advantages, the effectiveness of student experience inonline settings compared to in-class settings is questionable. Researchers around the world havebeen studying the effectiveness of online education [7-10]. Traditional in-class setting is in aprofessor-centered learning environment; where the professor teaches the theoretical componentof the course and explains the materials to the students directly within the limited class hours.Also, the practicum component is carried through the hands-on laboratory setting. Theinteraction in this
-Muller (GM)pancake survey meters, are suitable for either detailed or spot surveys. Since handheldinstruments are portable, rugged, versatile, and easy to use, they are common in the radiationprotection community. Walk-through portal monitors can be best employed in communityreception centers (CRCs) or in entrances to critical structures, such as hospitals and publicbuildings.This project has purchased new radiation detection equipment for teaching laboratory. Theequipment includes Radiation Emergency Response Kit (Ludlum Model 2241-3RK2) [4],Portable Portal Monitor (Ludlum Model 52-1-1) [5], and Electronic Personal Dosimeter(Canberra’s UltraRadiac-Plus) [6]. Radiation Emergency Response Kit, Electronic PersonalDosimeter, and Portal Monitor are
Paper ID #14909Improving the Impact of Experiential Learning Activities through the Assess-ment of Student Learning StylesDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr
acquired for the labs and studentswere introduced to them at the end of the semester. The platforms used for the lab experimentsare Nexys™3, based on XILINX Spartan-6 FPGA chip and manufactured by DigilentInc17. TheNexys™3 board is presented in figure 1. Figure 1 Nexys™3 Spartan-6 FPGA boardsIn the academic year 2013-2014, a new lab manual was created, teaching students design entry,and prototyping using Xilinx ISE® tools and Digilent ADEPT software. The laboratory tutorialswere based on materials provided at workshops sponsored by the NSF ATE grant “DUE-1003736 – Developing the Digital Technologist for the New Millennium” and posted on-line at18.The first author of this paper attended the NSF workshops, finding them
Effectiveness of Traditional, Blended and On-line Course Offering ModelsAbstractSeven years’ study on the effectiveness of traditional, blended and on-line course offeringmodels is presented. This study is based on the development and implementation of these threemodels on Electrical Machinery course offering. The traditional way of teaching of Electricalmachinery course for EET and Mechanical Engineering Technology (MET) majors has beenconducted for years and therefore provides us with significant statistics on students'comprehension of the subject. The goal of a blended approach is to join the best aspects of bothface-to-face and online instruction: classroom time can be used to engage students in advancedlearning experiences
, CONTRACTS& FELLOWSHIPS (Summaries) Total Grants & Contracts Participation Exceed $10 million Grant I: (PI- Cyril Okhio) Period: 1993-1996 Amount: $600K Agency: NASA Lewis Research Center Title: Tocarry out research under a unit titled ”Research Laboratory for Engineering and Technology” (ReLEnT)at Central State University. Grant II - (Proprietary: PI - Cyril Okhio) Title: ”Research Facility To StudyFlows Through Annular Diffusers” Agency: GE/NASA-LRC Amount: $ 469K Period: 1994 - 1998 GrantIII: (PI - Cyril Okhio) Title: NPARC - CFD Code Validation Experimentation for Component Designs.Agency: NASA Glenn Amount: $ 360K Period: 1996 - 1999 Grant IV: (Co-PI – Cyril Okhio) Title:Tertiary Education Linkage Program TELP Team: Collaborative - MIT
artifact destined to become an attractive monument to misplaced priorities. I use my personal funds to pursue professional development activities. In addition to faculty technical currency, faculty should be exposed to pedagogy of teaching and learning. The relationship, between faculty technical/professional currency and student learning, needs to be investigated in all engineering and technology programs. Especially for the upper-division classes in a 4-year Engineering Technology (ET) curriculum, I personally have been moving from the “sage on the stage” lecture model of ET courses to laboratory-based “Design/Prototype/Build” individual &/or team-based experiences. These open-ended, student directed projects
districts across Ohio preparing students for STEM career and college endeavors.Larraine A. Kapka, Sinclair Community College Assistant Dean and Professor, Sinclair Community College MSME, MS Ind Mgt, PE (Ohio) Over 20 years industry experience 15 years higher education experience c American Society for Engineering Education, 2016 Virtual Online Tensile Strength Testing SimulationAbstractSupported through NSF-DUE, this TUES Type 1 project is 1) developing an open source,virtual, online tensile testing laboratory simulation; 2) conducting research to compare the costsand learning outcomes for using on-site, hands-on tensile testing equipment versus an onlinesimulation; 3) creating close industry
Manager at General Motors, Cadnetix, and Motorola. His interests include engineering management, technological literacy, improving the competitiveness of American companies, and real-time embedded systems.Dr. Donald C. Richter P.E., Eastern Washington University DONALD C. RICHTER obtained his B. Sc. in Aeronautical and Astronautical Engineering from The Ohio State University, M.S. and Ph.D. in Engineering from the University of Arkansas. He holds a Professional Engineer certification and worked as an Engineer and Engineering Manger in industry for 20 years before teaching. His interests include project management, robotics /automation, Student Learning and Air Pollution Dispersion Modeling.Prof. Jason K. Durfee P.E
changes in engineering education, especially inelectrical and computer engineering fields, both in terms of the content and its delivery. With theadvent of computers, learning through computer-based environments has dramatically increased1, 2 . The high demand in engineering professionals equipped with relevant and up-to-date PLCsskills, drives the engineering education to develop the alternative to the standard in-classinstruction approaches. Traditional approach of teaching PLCs assumes the training to be doneon actual equipment. Theory and exercises are integrated into a course to improve and perfectstudent skills. The conventional way of performing an experiment is to be physically present inthe laboratory. Students work in groups of two to
Institute of Science, Bangalore, India. He was an Assistant Professor at the Pennsylvania State University, 1990-’93. He got a Ph.D. in Engineering from the Univer- sity of Toledo, Ohio, 1989. His teaching and research interests are in electrical engineering/technology area with specialization in artificial intelligence, power and energy systems, control systems and computer networking. He is a fellow of Institution of Engineers (India) and senior member of IEEE and ISA.Dr. David Border, Bowling Green State University David A. Border, Ph.D., holds a principle research interest in electronic information systems. This field includes digital communication and networking and intelligent networked devices. His current work in
its steering committee for several years. He has invested over twenty-five years in the development and maintenance of a multimillion dollar manufacturing laboratory facility complete with a full scale, fully integrated manufacturing sys- tem. Professor Harriger has been a Co-PI on two NSF funded grants focused on aerospace manufacturing education and is currently a Co-PI on the NSF funded TECHFIT project, a middle school afterschool pro- gram that teaches students how to use programmable controllers and other technologies to design exercise games. Additionally, he co-organizes multiple regional automation competitions for an international con- trols company. c American Society for
in 2007. Dr. Wrate has now returned to his boyhood home and is teaching at Northern Michigan University. He is a member of HKN and IEEE, a Registered Professional Engineer in California, and is a past chair of the Energy Conversion and Conservation Division of ASEE.Prof. Michael D. Rudisill, Northern Michigan University Michael Rudisill received a B.S.E.E. from the University of Illinois and a M.S.E.E. from the Air Force Institute of Technology. He is a registered Professional Engineer in the state of Michigan and has been with Northern Michigan University for over 20 years. c American Society for Engineering Education, 2016 Update on the Development of an
its steering committee for several years. He has invested over twenty-five years in the development and maintenance of a multimillion dollar manufacturing laboratory facility complete with a full scale, fully integrated manufacturing sys- tem. Professor Harriger has been a Co-PI on two NSF funded grants focused on aerospace manufacturing education and is currently a Co-PI on the NSF funded TECHFIT project, a middle school afterschool pro- gram that teaches students how to use programmable controllers and other technologies to design exercise games. Additionally, he co-organizes multiple regional automation competitions for an international con- trols company.Susan Marie Flynn, College of Charleston Susan Flynn
Paper ID #15284Embedding Online Based Learning Strategies into the Engineering Technol-ogy CurriculumDr. Vukica M. Jovanovic, Old Dominion University Dr. Jovanovic received her dipl.ing and M.Sc. in Industrial Engineering from University of Novi Sad, Serbia. She received a PhD in Technology at Purdue University, while working as a PhD student in Cen- ter for Advanced Manufacturing, Product Lifecycle Management Center of Excellence. Dr. Jovanovic is currently serving as Assistant Professor of Engineering Technology, Frank Batten College of Engineering and Technology at ODU. She is teaching classes in the area of
. Jovanovic is currently serving as Assistant Professor of Engineering Technology, Frank Batten College of Engineering and Technology at ODU. She is teaching classes in the area of mechatronics and computer aided engi- neering. Her research Interests are: mechatronics, digital manufacturing, manufacturing systems, and engineering education. c American Society for Engineering Education, 2016 Introducing Writing Assignments in Engineering Technology Courses to Enhance Technical Writing Skills and Critical ThinkingAbstractThis study was prompted by the university wide initiative to improve students’ technical writingskills across-the-curriculum by introducing low stakes writing assignments as
Paper ID #15247Fixture Design to Supplement Machining and Fuel Cell EducationProf. Yeong Ryu, State University of New York, Farmingdale YEONG S. RYU graduated from Columbia University with a Ph.D. and Master of Philosophy in Mechan- ical Engineering in 1994. He has served as an associate professor of Mechanical Engineering Technology at Farmingdale State College (SUNY) since 2006. In addition, he has conducted various research projects at Xerox Corporation (1994-1995), Hyundai Motor Corporation (1995-1997), and New Jersey Institute of Technology (2001-2003). He has been teaching and conducting research in a broad range of
Engineering, 2nd Edition, Prentice Hall.6. Yang, Horng-Jyh, (2015), Online resources utilization in geotechnical engineering laboratory for undergraduate civil engineering students, Proceedings of the 2015 ASEE North Central Section Conference, American Society for Engineering Education.7. Puchner, Richard, (2011), “Using Google Earth in geotechnical investigations”, Magazine of the South African Institution of Civil Engineering, Volume 19, issue 3.8. Kumar, Saneev, (2014), “Teaching Geotechnical Engineering using Professional Practice”, International Conference on Engineering Education, Gainesville, Florida.9. Boruff B. J., Emrich C., and Cutter S. L., (2005), Erosion Hazard Vulnerability of US Coastal Counties