the survey were invited to an interview conducted near the endof the Winter semester or during the summer.Following the interview findings regarding team project experience (2016), we posed newquestions about peer relations in 2017. Findings from the 2017 interviews revealed topics relatedto equity, diversity and inclusion (EDI). New questions were included in 2018 interviews toexplore EDI-related experiences and discourses. This paper focuses on the data from studentswho were interviewed in 2018. In summer 2018, the [first author] met with 4 male and 3 femalestudents, to examine issues linked with inclusion and exclusion. This led to a greaterunderstanding of the issues linked with gender, socioeconomic status, and race, as well as
that canuncover cultural opportunities and challenges for advancing equity-related work, and how thisapproach to understanding an organization can be replicated at other institutions. We will discussthe first three drafts of the survey, the feedback process for each draft, and how this process hasinformed how we see the utility of this survey in our context. 1.2. Overview of Larger Project This work is one part of a larger collaborative NSF-funded project (Award # 2217640).The goal of the larger project is to establish a Center for Equity in Engineering (CEE) focused onorganizational transformation for graduate education at a single predominately-white institution.To this end, a team of practitioners and researchers have been
condition and can nowimagine ways of “fixing” the perceived problem, but they project a set of solutions thatmedicalize the condition versus understanding social, cultural, and political forces that shapeindividual’s lives. If these are the paradigms under which we are designing new medicaltechnologies, we must ask: who receives high quality care?Analyzing a series of regularly experienced medical technologies, I argue from my position as abiomedical engineer, materials scientist, and a chronically ill person that historicallymarginalized populations are receiving worse care because of technology and how it has beenand continues to be designed.Suffering from COVID-19? If you are darker-skinned, pulse oximeter devices will be three timesless
courses that explored technical and societal integration,and more design courses and projects that included themes of human-centered design andsystems thinking (Wisnioski, 2012). Paul B. Daitch at Rochester Polytechnic Instituteemphasized design as "the major vehicle which relates technique and society" (Daitch, 1970, p.21).PurposeFirst-Year Engineering (FYE) courses have received attention from practitioners and scholarsalike in the past couple of decades (Pendergrass et al., 2001; Kilgore et al., 2007). The First-Year Programs division of ASEE had 28 papers associated with it in the 2020 Annualconference alone. There is some agreement on the content that is taught in these courses,which comprises concepts such as design, mathematical modeling
than $40million in NSF engineering education research projects (https://www.nsf.gov/awardsearch/). CIshave been developed and deployed in engineering education environments using variousvalidation methods [2], [3], [7], [10]. These methods however do not mention efforts to look atquestion context when developing the concept inventories. In addition, because CI developerswrite the questions specifically to assess students’ conceptual understanding of the topic in a‘real-world’ context, there is potential that not all students would have the same exposure orrelatability to the context [11]–[13]. Thus, the questions have the potential to perpetuatecontextual bias through sociocultural norms[11], [12], [14]. National organizations that
-0805) Mechanical/Mechanical EngineeringTechnology/Technician, which is defined as, “A program that prepares individuals to apply basic engineering principles and technical skills in support of engineers engaged in the design and development phases of a wide variety of projects involving mechanical systems. Includes instruction in principles of mechanics, applications to specific engineering systems, design testing procedures, prototype and operational testing and inspection procedures, manufacturing system-testing procedures, test equipment operation and maintenance, and report preparation.” [8].This CIP is related in the CIP-SOC Crosswalk [9] to the SOC (17-3027) MechanicalEngineering
instructor, making it easier for the student to ask for help. Work-related connectionshelped the student could become more interested in the outcome of their project and in turn learnmore about the topic, since they were allowed to apply their class studies to a topic they werepassionate about. “A project-based sustainable design lesson in engineering made me feel whole... Theinstructor included personal reflection and interdisciplinary conversations into our tasksthroughout the course... Additionally, the instructor addressed student needs outside ofacademics. They encouraged frank conversation regarding business, personal, and emotionalissues. This support built trust and helped us operate better... These encounters made me feelvalued for
program [20]-[22].What classroom elements are associated with the challenges students with NADs face?Our students commented on numerous classroom preferences regarding course structure whichhighlighted both positive and negative perceptions of academic practices. These preferencesspanned long-term projects, group work, quizzes/exams, independent assignments, andassignment frequency. Overall, positive and negative perceptions of course structures variedacross disability types (cognitive and/or emotional). One exception was group work, where astrong split was observed between disability types: students with cognitive disabilities foundgroup work to be overwhelmingly positive, while students with emotional disabilities foundgroup work to be
similar meaning into categories toform themes. For example, the three preliminary codes mentioned earlier in this paragraph werecombined into a theme of a sense of belonging to Engineering. For more examples refer tocolumn three in Table 2. To enhance the quality and trustworthiness of the study planning, datacollection, analysis, interpretations, and reporting, we solicited feedback from the research teamon all steps of the study. This included but was not limited to revising the interview protocol andcodebook, piloting interviews, and soliciting feedback from co-authors and other colleagues ascoding and analysis progressed through the project [25].Table 2. Example analytic process for data excerptsInterview excerpts [1
consistent, engaging and hands-on experience for first-year students, hoping to excite and inspire them in the first step of their journey. There is a strong team, continuously improving on project-based curriculum for the first-year and beyond. Sudan Freeman is also the Associate Dean, Undergraduate Education. ©American Society for Engineering Education, 2023 Student Definitions of DEI in First-Year Engineering and Capstone DesignLike many universities, Northeastern University has several initiatives to improve diversity,equity, and inclusion (DEI) in its various programs. The authors have received an internal grantto develop the “New Engineering Toolbox”, which will be a resource to help
Paper ID #38106Narratives of Identity Coherence and Separation in the Figured Worlds ofUndergraduate Engineering EducationGabriel Van Dyke, Utah State University Gabriel Van Dyke is a Graduate Student and Research Assistant in the Engineering Education Department at Utah State University. His current research interests are engineering culture and applying cognitive load theory in the engineering classroom. He is currently working on an NSF project attempting to improve dissemination of student narratives using innovative audio approaches. Gabe has a bachelor’s degree in Mechanical Engineering from Utah State University
. Her research interests include critical, antiracist science teaching that works to dismantle systems of oppression. Currently, she is a research assistant on the DRK12 project COVID Connects Us: Nurturing Novice Teachers’ Justice Science Teaching Identities, which uses design-based research to develop justice-centered ambitious science teaching practices with in-service science teachers. She also works on NSF projects that aim to improve equity in undergraduate STEM education, especially for students with LGBTQ+ identities. In addition, she is working in the Education Leadership department exploring student activism around issues of racial equity. Her former role as a high school science teacher and facilitator of
marginalized populations at the organizational level. Her current research projects include exploring relationships between STEM graduate student funding types, educa- tional experiences, and skill development, as well as examining the relationship between Responsibility Center Management (RCM) and administrative outcomes. She holds a Ph.D. in Higher Education from Virginia Tech, an M.B.A. from Lynchburg College, and a B.A. in Spanish from Mars Hill College.Dr. Lisa D. McNair, Virginia Polytechnic Institute and State University Lisa D. McNair is a Professor of Engineering Education at Virginia Tech, where she also serves as Director of the Center for Educational Networks and Impacts at the Institute for Creativity, Arts, and
conceptualized as comprising two dimensions:leadership competence and policy control [16], [17]. Leadership competence encompasses one’sbeliefs about their skills for organizing and leading groups and policy control is a person’s beliefthey can influence decisions about policy in an organization or community [16]. Understandingcivil engineering undergraduate students' sociopolitical control beliefs may provide insight abouttheir agency to participate in activities that promote systemic change related to infrastructureinequities.MethodsParticipants and ProceduresStudy data for this project included survey responses to validated scales measuring: criticalconsciousness, system justification beliefs, social empathy, and sociopolitical control
Paper ID #32956Equity, Engineering, and Excellence: Pathways to Student SuccessDr. Doris J. Espiritu, Wilbur Wright College Doris J. Espiritu, PhD is the Executive Director of the College Center of Excellence in Engineering and Computer Science and a professor of Chemistry at Wright College. Doris Espiritu is one of the first National Science Foundation’s research awardees under the Hispanic- Serving Institutions (HSI) Program. She pioneered Engineering at Wright and had grown the Engineering program enrollment by 700 % within two years of the NSF-HSI project. Doris founded six student chapters of national organizations
understanding of the aims and uses of engineering knowledge. The purpose of this work is to explore if there is a relationship between a participant’srace/ethnic background and the paradigm which they hold, specifically that of the NewEcological Paradigm. This will provide educators and researchers a way to increase ourknowledge for broadening the participation of traditionally marginalized populations inengineering. This project utilized existing survey data of senior engineering students at a U.S.university to investigate this relationship. It is hypothesized that students from traditionallyunderrepresented groups and people of color will be more likely to endorse the New EcologicalParadigm than their White counterparts. A Pearson’s chi-square
them to engage with the values they construct regarding what engineering is and howthey want to participate.Especially with the increasing emphasis on the sociotechnical aspect of engineering in thecurricula [8], [9], [10], students are vocalizing their aspirations for a more humanizing, equitable,and justice-oriented engineering, one that works with communities, not on them [11]. However,through the contact points with the industry, the industry continues to project images ofengineering as technocentric, capitalist, neglectful of justice issues, and unattentive to its impacton the communities [3], [12]. These images leave students to experience tensions between theiridentities and the industrial culture, as manifested in the above quote of an
Research Assistant in the Department of Civil and Environmental Engineering at Morgan State University, Maryland, where he is pursuing his M.Sc. in Civil and Environmental Engineering with a concentration in Construction Management and Transportation Engineering. He earned his B.Tech. in Building Structure from the Federal University of Technology, Akure, Nigeria. Michael has extensive professional experience managing large-scale heavy construction and fac¸ade projects, including high-rise and industrial developments across West Africa, having held key roles in the field. His research interests include the integration of digital tools in construction education, resilient building design, and asset management in civil
approach has spread internationally, especiallyin the United States, and that there is currently a boom in Latin America. These advances inLatin America have occurred thanks to the implementation of education policies that involvethe development of programs or projects such as the Latin American STEM Network, thedeclaration of STEM territories in the cities of Medellin and Bogota, the State of Mexico inMexico, Valparaiso in Chile, Vicente Lopez in Buenos Aires, Argentina, among others [6].On the other hand, Rojas Mesa et al. refer to the need to have more engineers in all countries,a situation that seems difficult to achieve given that there is less and less interest in thesecareers among the new generations. In Colombia, there is marked desertion
different topics.The most recent score is weighted more heavily than the older scores. This promotes the growthmindset and the idea of continuous improvement and helps motivate the students to continuetheir work on the content rather than giving up after one or more low marks.Chemistry Challenge OutcomesThe Chemistry Challenge (CC) is a team project that the students work on throughout thesemester. Students select a topic they want to dive more deeply into and develop a procedure,perform experiments, collect and analyze data, and present their results in a poster session. Theseoutcomes are specific to this project and include aspects of teamwork. CC outcomes includeexperimental design, data analysis, and teamwork. For example: Analyze numerical
Giraffe Award (for sticking her neck out); 2014 College of Engineering In- struction Award; 2014 The University of Texas System Regents’ Outstanding Teaching Award; the 2012 NCEES Award for students’ design of a Fire Station. In her work, Dr. Santiago helps to find innova- tive engineering solutions through an understanding of the balance between sustainability, social equity, entrepreneurship, community engagement, innovation, and leadership to improve the well-being of peo- ple. A few examples include: interdisciplinary projects that provide safe drinking water to underserved communities in El Paso, Ciudad Ju´arez, Puerto Rico, and Haiti; a bridge that connected communities in Puerto Rico; a solar charging station
Paper ID #37881Strategies Promoting Undergraduate Retention (SPUR): IdentifyingStrategies to Help Students Reach Graduation through a Student-DrivenApproachArielle Marie Rainey, Colorado School of Mines Arielle Rainey graduated from the Colorado School of Mines in May 2020 with a Bachelor’s in Environ- mental Engineering and in May 2022 with a Master’s in Humanitarian Engineering. She is still currently at Colorado School of Mines, working on the Diversity, Inclusion & Access team participating in various projects to impact the student experience for underrepresented groups in engineering.Heather Renee Houlton, Colorado
taught and collaborated on research related to equity and social justice. With her colleagues at Cal State LA she recently received an NSF grant called Eco- STEM which aims to transform STEM education using an asset-based ecosystem model. Specifically, the Eco-STEM project focuses on shifting the metaphor in STEM education from a factory model to an ecosystem model. This Ecosystem model aspires towards an organic and healthy environment that nurtures students, faculty, and staff to become individuals fulfilled professionally and personally. She is also a co-advisor to Engineers without Borders and Critical Global Engagement at Cal Poly. American c Society
AIAN students [14]. The data from our study showsthat 54% of students identifying as underrepresented minorities graduated with an engineeringdegree, which is better than the national averages. This number is higher (63%) if the student iscontinuing generation and not Pell-eligible.Using Data as Motivation for ChangeThis project began as a collaboration between three engineering departments (ElectricalEngineering, Computer Engineering, and Computer Science; Civil, Environmental, andArchitectural Engineering, and Mechanical Engineering), the Center for Teaching Excellence atour institution, and the Analytics and Institutional Research department with the goal of usinginstitutional data to drive department-level change. Prior to this project
necessary for one’s life to gowell. While there may be disagreement on what those precise conditions are, some basicmaterial needs can surely be agreed upon by all, including food, shelter, clean water, clothes, andhealthcare. In the United States, all these material needs cost money. Hence, to have loweconomic welfare is to be unable to afford the basic material goods that are necessary to haveone’s life go well.With this understanding of welfare, it is now possible to see how holding safety paramount canconflict with holding welfare paramount. To hold safety paramount can come at a substantialcost. If the cost of an engineering project that holds safety paramount is so high that it affects theclient’s economic welfare, then it is indeed not
, community engagement projects, evaluation tools and technology, and gender issues in STEM education. https://orcid.org/0000- 0002-0383-0179Prof. Maria Elena Truyol, Universidad Andres Bello, Chile Mar´ıa Elena Truyol, Ph.D., is full professor and researcher of the Universidad Andr´es Bello (UNAB). She graduated as physics teacher (for middle and high school), physics (M.Sc.) and Ph.D. in Physics at Universidad Nacional de C´ordoba, Argentina. In 2013 she obtained a three-year postdoctoral position at the Universidade de Sao Paulo, Brazil. Her focus is set on educational research, physics education, problem-solving, design of instructional material, teacher training and gender studies. She teaches undergraduate courses
Paper ID #42024Inclusive Teaching Practices in Engineering: A Systematic Review of Articlesfrom 2018 to 2023Rajita Singh, University of Oklahoma Rajita Singh is a junior at the University of Oklahoma, where they are pursuing an English major with a minor in Psychology. Passionate about the improvement of education in all fields, they are involved in multiple projects centered on researching pedagogy. Their most recent involvement has been in engineering pedagogy, where they bring their writing skills and synthesis abilities.Dr. Javeed Kittur, University of Oklahoma Dr. Kittur is an Assistant Professor in the Gallogly
engineering education. Her current book project, On the Bleeding Edge: Gender, Immigration and Precarity in Semiconductor Engineering, investigates the intersections of gender, race/ethnicity, and immigration status among semiconductor engineers.Dr. Michael S Thompson, Bucknell University Stu is an associate professor and chair of the department of Electrical and Computer Engineering at Bucknell University, in Lewisburg, PA. While his teaching responsibilities typically include digital design, computer-related electives, and senior design, his focusDr. Rebecca Thomas, Bucknell University Rebecca Thomas is the inaugural director for the Pathways Program at Bucknell University, where she oversees the rollout of Bucknell’s
attack for their explicitchallenge to the social and structural status quo.Additionally, the theory of intersectionality postulates that the experiences ofmultiply-marginalized individuals will be overlooked by any theory that focuses on a singleidentity-based attribute; alternatively, the compounding experiences of oppression must also beconsidered in order to achieve liberation for all people [21, 22]. This framework was pioneeredby Kimberlé Crenshaw as a means of understanding the compounding effects of discriminationagainst Black women on the bases of both gender and race. Intersectionality is more frequentlybeing applied in engineering education research in recent years (e.g., [23, 24]). While theeducational research in this project
themission of serving Black and Native students especially (i.e., HBCUs and TCUs).References[1] “The Data Buddies Project,” CERP. Accessed: Jan. 10, 2025. [Online]. Available: https://cra.org/cerp/data-buddies/[2] A. N. Washington, “When Twice as Good Isn’t Enough: The Case for Cultural Competence in Computing,” in Proceedings of the 51st ACM Technical Symposium on Computer Science Education, in SIGCSE ’20. New York, NY, USA: Association for Computing Machinery, Feb. 2020, pp. 213–219. doi: 10.1145/3328778.3366792.[3] A. N. Washington, S. B. Daily, and C. Sadler, “Identity-Inclusive Computing: Learning from the Past; Preparing for the Future,” presented at the 53rd ACM Technical Symposium on Computer Science Education