Paper ID #42901The ICE Faculty Development Program (Integrating Curriculum with EntrepreneurialMindset) – Then and NowDr. Andrew L Gerhart, Lawrence Technological University Andrew Gerhart, Ph.D. is a Professor of Mechanical Engineering at Lawrence Technological University. He is a Fellow of the Engineering Society of Detroit and is actively involved in ASEE and the American Society of Mechanical Engineers. He serves as Faculty Advisor for the American Institute of Aeronautics and Astronautics Student Chapter at LTU, director of IDEAS (Interdisciplinary Design and Entrepreneurial Applications Sequence), chair of the First
Paper ID #38526Nuestro Impacto: An Insider Look into the Connections between Our PastExperiences and Current Teaching and Mentoring PracticesDr. Idalis Villanueva Alarc´on, University of Florida Dr. Villanueva Alarc´on is an Associate Professor in the Engineering Education Department at the Uni- versity of Florida. Her research areas of interest are hidden curriculum, multi-modal methods, mentoring, and professional development.Dr. Laura Melissa Cruz Castro, University of Florida Dr. Laura Melissa Cruz Castro is an instructional assistant professor in the Department of Engineering Education at University of Florida.Dr
$88 billion dollars’ worth of damages in the tumultuous period [1]. The United NationsHuman Refugee Agency estimates that over 1 million Iraqis are living in protracted situations andover 2 million remain internally displaced [2]. Yet, the nation has been on a steady path towardreclamation, reformation, and rebuilding of its historical, cultural, and social infrastructure [3].Education has an important role to play in supporting a country’s economic recovery after yearsof conflict and instability[4], a fact that is not lost to citizens of the republic [5]. Particularly, highereducation has a critical role in providing career development opportunities that translate intosuccessful integration in community development in both stable and
DEI-related construct) versus the ability toimplement inclusive teaching strategies (qualification with DEI-related construct) in theircourses. We did not ask respondents to describe where in the application package they wouldexpect to see information to inform their evaluation of these constructs; however, we expect theywould be evident to varying degrees in many common application documents, most notably theteaching statement and cover letter, and perhaps, in the curriculum vitae with evidence ofprofessional development in the area of inclusive teaching and/or awards received (e.g., teachingassistants who receive teaching awards).Quantitative data cleaning and statistical analysis were carried out using Jamovi (2021), an open-source
-progress paper, we describe our efforts to implement a coach and peer-to-peer mentoringmodel to provide structured faculty development in entrepreneurial mindset (EM) integration throughmakerspaces.As faculty members try to innovate and update their classes, a recent merger of the Maker movement andthe Entrepreneurial Mindset (EM) movement has provided specific training and opportunities to revitalizethe engineering curriculum. Studies have suggested facilitating EM projects with the makerspace areexcellent opportunities to develop student skills in areas related to entrepreneurial mindset such asopportunity recognition, learning from failure, stakeholder engagement, and value creation [1, 2]. Whilemakerspaces are a proven conduit for EM, they are
, including theestablishment of personal relationships with students, the effective organization of course contentand class activities, strategies for motivating students, and the integration of course content withreal-world applications. During the lightning talk, we will share a comprehensive overview ofthe study's research findings as well as the importance of student-centered teaching practices inengineering education.Background and MotivationThe contemporary education of engineers remains a challenging domain, and a key area needingmore focus on identifying effective teaching practices, particularly in middle and upper-levelengineering classes. This lessons-learned paper, which emerged from an NSF-funded project(masked for review), explores
candid look at how much students learn and why they should be learning More-New Edition. Princeton University Press.Carlson, E. D., Engebretson, J., & Chamberlain, R. M. (2006). Photovoice as a Social Process of Critical Consciousness. Qualitative Health Research, 16(6), 836–852. https://doi.org/10.1177/1049732306287525Castaneda, D. I. (2019). Exploring Critical Consciousness in Engineering Curriculum Through an Ill-Structured Problem. 2019 IEEE Frontiers in Education Conference (FIE), 1–5. https://doi.org/10.1109/FIE43999.2019.9028370Crenshaw, K. (1991). Women of color at the center: Selections from the third national conference on women of color and the law: Mapping the margins: Intersectionality
convictions regardingSTEM are more inclined to implement a variety of assessment methods, coupled withconstructive evaluation principles, to bolster student learning outcomes. Furthermore,the study reveals that the STEM literacy of rural teachers serves as an intermediarybetween their teaching beliefs and evaluation approaches. In addition, the academiccourse subject instructed by these educators acts as a moderator in the relationship,underscoring the integration of humanities with STEM disciplines to achieve abalanced and comprehensive education. Highlighting the urgency of refiningassessment practices and enhancing STEM literacy among rural educators, this studycalls for future scholarly inquiries into the incorporation of liberal arts with
behavior in learning environments. His academic training was in Physics and Philosophy before he turned to science (partic ©American Society for Engineering Education, 2023 Faculty Workshop on Teaching SustainabilityDespite the urgent need to integrate sustainability throughout the engineering curriculum, mostfaculty have little to no training or confidence in doing so. We report on a 4-day pilot facultyworkshop delivered in January 2023 by an interdisciplinary group of faculty at a large mid-Atlantic R1 university designed to help engineering instructors do this. After substantial effort tocreate a mutual understanding around the diverse approaches we as faculty bring from ourrespective
psychology emphasizing applied measurement. ©American Society for Engineering Education, 2023 Addressing New ABET General Criteria Focusing on Diversity, Equity, and InclusionIntroductionIn fall 2021, ABET released proposed changes to the General Criteria for accreditingengineering programs, including (a) definitions for diversity, equity, and inclusion (DEI) and (b)changes incorporating a basic grasp of these concepts to the curriculum (Criterion 5) and faculty(Criterion 6). While some may see the explicit inclusion of DEI as a radical revision of ABETcriteria, a historical perspective shows that the proposed new requirements are an incrementalreform stemming from a steady evolution of ABET’s integrating professional
that they needed to change how theyapproached, taught, and interacted with Latinx students.Over the past year:- School X embraced the PDSA cycle and integrated it into the classroom setting, specifically inBiology 180. This class consisted of 12 Latinx students. The primary goal was to incorporatescientific inquiry within the Latinx community. As part of the curriculum enhancement, TinyEarth, a program that inspires students to engage in scientific research, was introduced to addressanti-fungal resistance in crops. Each student experimented, and based on their findings, theywere offered an opportunity to join the science lab. To foster a sense of identity within the lab,Latinx students were informed about the significance of specific native
pedagogical approaches to enhance teaching and learning outcomes. This sub-themeexists as many participants reported learning about strategies to implement methodology inmanners that do not come intuitively, to potentially surpass a lack of experience in the area.Example quotes are provided below: • “I learned what an implementation of "Arts" in an engineering technology setting can look like.” • “I learned how to frame the entrepreneurial mindset as a target in curriculum.” • “I have had limited experience in bioinspired design and STEAM, and was surprised at how well we were able to integrate the concepts into my course module.” Sub-Theme #2: Diversity of PerspectiveThe theme "Diversity of Perspective" refers to the
education departments: • Learning design and technology • Environmental economics • Engineering technology • Journalism • Science and mathematics • Educational psychology • Curriculum and instruction • Rhetoric, composition, and literacy studies • Education, leadership, and policy studies • Heritage studies, and history languages, cultures, and literature among others.Future studies are needed to understand the impacts that these inter- and multidisciplinarydepartments have on both research and teaching practices in these departments.Finally, it was important to note an observation and perhaps an emerging trend. In thisexploratory study, it was found that the highest number of non-tenure track faculty across
structuredthe methodology as follows: a. Narrative Collection: Each co-author, representing a distinct national background, shares their personal narrative. These narratives encompass their experiences, challenges, and successes in navigating U.S. academia as an international faculty. This process includes documenting instances of cultural adjustment, professional development and encounters with institutional barriers [16]. We presented each narrative based on themes like transitional experiences, our experiences as graduate students, then transitioning into our first professional roles (postdoc, junior faculty etc), and then finally moving towards post- tenure experiences. b. Integration of Insights: Finally, the
worked as the Education Project Manager for the NSF-funded JTFD Engineering faculty development program, as a high school math and science teacher, and as an Assistant Principal and Instructional & Curriculum Coach.Dr. Ann F. McKenna, Arizona State University Ann F. McKenna is the Vice Dean of Strategic Advancement for the Ira A. Fulton Schools of Engineering at Arizona State University, and is a professor of engineering in the Polytechnic School, one of the seven Fulton Schools. Prior to joining ASU, she served as a program director at the National Science Founda- tion in the Division of Undergraduate Education, and was the director of education improvement in the McCormick School of Engineering at Northwestern
❏ Include a diversity/inclusive statement and land acknowledgment in your course syllabi - Make course names and descriptions inclusive so they correspond with everyone - Add pronouns and inclusive language to syllabus - but not as separate thing, as integrated into the syllabus so it becomes normalized (and talk about it) - Resources: Sample Inclusive Teaching Statements for the Course Syllabus ❏ Clarify the role of the instructor during your first-day instruction -- as a facilitator of learning as opposed to an authority figure - Share your personal story and motivation with the class - go beyond your professional titles. Students tend to feel connected with instructors who are willing