Portland, Oregon
June 23, 2024
June 23, 2024
June 26, 2024
Faculty Development Division (FDD)
Diversity
8
10.18260/1-2--47730
https://peer.asee.org/47730
67
Shabnam Wahed, currently pursuing a Ph.D. in Engineering Education, is dedicated to revolutionizing the learning experience for engineering students beyond mere memorization. Passionate about elevating students' conceptual understanding, Shabnam directs her efforts toward refining the teaching and assessment methods for mastering fundamental and challenging engineering concepts. With a background in Electrical and Computer Engineering and a rich academic experience spanning six years, her overarching goal is to craft engineering learning environments and experiences in a way that intricately engages students on a cognitive level. In addition to her role as an engineer and researcher, Shabnam is an advocate and ally for fostering greater inclusion in STEM fields and beyond.
Nicole is an assistant professor in the Department of Engineering Education at Virginia Tech. Prior to joining VT, Dr. Pitterson was a postdoctoral scholar at Oregon State University. She holds a PhD in Engineering Education from Purdue University and oth
Jennifer Case is Head and Professor in the Department of Engineering Education at Virginia Tech. She holds an honorary position at the University of Cape Town. Her research on the student experience of learning, focusing mainly on science and engineerin
David Knight is a Professor in the Department of Engineering Education at Virginia Tech and also serves as Special Assistant to the Dean for Strategic Plan Implementation in the College of Engineering. His research tends to be at the macro-scale, focused on a systems-level perspective of how engineering education can become more effective, efficient, and inclusive, and considers the intersection between policy and organizational contexts. Knight currently serves as the co-Editor-in-Chief of the Journal of Engineering Education.
Dr. Homero Murzi (he/él/his) is an Associate Professor in the Department of Engineering Education at Virginia Tech with honorary appointments at the University of Queensland (Australia) and the University of Los Andes (Venezuela). Homero is the leader of the Engineering Competencies, Learning, and Inclusive Practices for Success (ECLIPS) Lab, where he leads a team focused on doing research on contemporary, culturally relevant, and inclusive pedagogical practices, emotions in engineering, competency development, and understanding the experiences of traditionally marginalized engineering students (e.g., Latinx, international students, Indigenous students) from an asset-based perspective. Homero’s goal is to develop engineering education practices that value the capital that traditionally marginalized students bring into the field and to train graduate students and faculty members with the tools to promote effective and inclusive learning environments and mentorship practices. Homero aspires to change discourses around broadening participation in engineering and promoting action to change. Homero has been recognized as a Diggs Teaching Scholar, a Graduate Academy for Teaching Excellence Fellow, a Global Perspectives Fellow, a Diversity Scholar, a Fulbright Scholar, a recipient of the NSF CAREER award, and was inducted into the Bouchet Honor Society. Homero serves as the American Society for Engineering Education (ASEE) Chair for the Commission on Diversity, Equity, and Inclusion (CDEI), the Program Chair for the ASEE Faculty Development Division, and the Vice Chair for the Research in Engineering Education Network (REEN). He holds degrees in Industrial Engineering (BS, MS) from the National Experimental University of Táchira, Master of Business Administration (MBA) from Temple University, and Engineering Education (PhD) from Virginia Tech.
This lessons learned paper delves into the realm of effective student-centered teaching practices within middle and upper-level engineering classes, with the primary goal of enhancing students' acquisition of disciplinary knowledge. The research is anchored by a central inquiry: what student-centered teaching approaches do exemplary engineering faculty employ to promote knowledge-building in their courses, and how do these approaches align with their beliefs about teaching? To address the research question, the study employed the participatory action research (PAR) methodology, which prioritizes the invaluable input and expertise of participants. A diverse group of participants renowned for their teaching excellence was selected from five departments. A total of ten participants were chosen, and data was collected using a variety of methods, including classroom observations, analysis of course materials, surveys, and focus group discussions. Our observations across various courses have revealed common practices employed by instructors to foster effective learning environments. These practices encompass dynamic and diverse class introductions that utilize strategies like revisiting prior content, storytelling, and addressing student well-being to establish a strong foundation for the session. Throughout the class, instructors consistently maintained student engagement through techniques such as group activities, structured interactions, active problem-solving, and thought-provoking question-and-answer sessions. Visual aids and technology were integral in enhancing content delivery. Instructors also ensured the content was relatable by linking lessons to research findings, relatable examples, and familiar landmarks, grounding theoretical concepts in real-life relevance. Personalized support was a priority, with instructors offering targeted feedback to smaller groups and individual students, including one-on-one sessions for additional assistance. Some instructors introduced unique practices such as debate activities, involving students in decision-making processes, cross-course connections, and specialized problem-solving techniques. These diverse approaches collectively underscore the multifaceted strategies instructors employ to create engaging and effective learning experiences. Another significant initiative undertaken in our study involved organizing a summer workshop that provided a platform for instructors to convene and engage in collaborative discussions regarding their teaching practices and their top five teaching priorities. During this workshop, we also deliberated on the preliminary findings from our data collection. The instructors collectively emphasized the importance of getting students engaged in the learning process. We identified several overarching categories of priorities that held relevance for all instructors, including the establishment of personal relationships with students, the effective organization of course content and class activities, strategies for motivating students, and the integration of course content with real-world applications. During the lightning talk, we will share a comprehensive overview of the study's research findings as well as the importance of student-centered teaching practices in engineering education.
Wahed, S., & Pitterson, N. P., & Case, J. M., & Knight, D. B., & Murzi, H. (2024, June), Lessons Learned: Exploring Effective Student-centered Instructional Practices in Middle and Upper-level Engineering Paper presented at 2024 ASEE Annual Conference & Exposition, Portland, Oregon. 10.18260/1-2--47730
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2024 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015