Paper ID #28413Work in Progress: Inquiry-Based Lessons for Introduction to EngineeringInstructionDr. Michelle M Blum, Syracuse University Dr. Blum is interested in research in improving undergraduate engineering education; including develop- ment of inquiry based activities for first year engineering courses, improvement of student design projects, hands-on activities, professional skills development and inclusion and outreach activities. Dr. Blum also specializes in high performance materials development and characterization for tribological (friction and wear), structural, and biomedical applications
Society for Engineering Education, 2020Work in Progress: Formation of an engineering identity in first-year studentsthrough an intervention centered on senior design projectsAbstractThis “work in progress” paper describes a multiyear project to study the development ofengineering identity in a chemical and biological engineering program at Montana StateUniversity. The project focuses on how engineering identity may be impacted by a series ofinterventions utilizing subject material in a senior-level capstone design course and has thesenior capstone design students serve as peer-mentors to first- and second-year students. A morerapid development of an engineering identity by first- and second-year students is suspected toincrease retention and
Paper ID #28813Assessing a Summer Engineering Math and Projects Bootcamp to ImproveRetention and Graduation Rates in Engineering and Computer ScienceDr. Zahrasadat Alavi, California State University, Chico Dr. Zahrasadat Alavi, an Assistant Professor at the Department of Electrical and Computer Engineering at California State University Chico, received her PhD in Electrical Engineering from University of Wiscon- sin Milwaukee in May 2015. She received her B.Sc. and M.Sc. from Amirkabir University (Polytechnic of Tehran) with honors in 2007 and 2009 respectively, and another Master of Science from University of Wisconsin
various research projects. She’s also the founder and advisor of the first ASEE student chapter in Puerto Rico. Her primary research interests include investigating students’ understanding of difficult concepts in en- gineering sciences, especially for underrepresented populations. She also works in the development and evaluation of various engineering curriculum and courses at UPRM applying the outcome-based educa- tional framework.Dr. Nayda G. Santiago, University of Puerto Rico, Mayaguez Campus Nayda G. Santiago is professor at the Electrical and Computer Engineering department, University of Puerto Rico, Mayaguez Campus (UPRM) where she teaches the Capstone Course in Computer Engineer- ing. She received an BS
opportunities.Introduction The motivation of this study is to determine whether students at New York Universitywould electively enroll in a second semester of EG 1003. Incoming students are beingincreasingly exposed to engineering concepts in high school, resulting in a desire for engineeringchallenges in a project-based format. Integrating project-based curriculum early in engineeringeducation will introduce the engineering design process to socially relevant engineeringchallenges. The goal of the course is to be a comprehensive cornerstone course for students,which provides the foundation for first-year students to be prepared for the engineeringcoursework and future projects like their senior design capstone course. The cornerstone is oneof the few
student aspiration conforms to oneof the basic tenets of “design thinking” in that it is a methodology that imbues the full spectrumof innovation with a human-centered design ethos.At our university we have started to infuse the concepts of design thinking in our initialIntroduction to Engineering course and then later in our capstone senior design project courses.Between those “course bookends” we are working with our faculty to introduce to them thedesign thinking concept of “identifying the need” in place of only teaching “transactional”engineering concepts and theories and how to solve engineering problems.This paper will illustrate how we have introduced design thinking in our first-year introduction toengineering course and then conducted
learning, where students work toward completion of a fully realizedproject. Typically, the project is something tangible and utilizes a hands-on approach [11] [12][13] and can be either ill- or well-defined. The first-year Cornerstone project in ENGR 111 tendsto be more well-defined in comparison to the more ill-defined Capstone project experiences duringrespective senior years. Finally, discovery-based learning in employed throughout ENGR 111course lesson plans. In discovery-based learning, students are given tasks, such as explainingobservations or answering a question, with the educational objective of discovering the underlyingengineering phenomenon [14] [15].ENGR 111 Course OverviewAs previously mentioned, the ENGR 111 course structure is
exclusion from high-profile team roles [5-9].Recent research indicates that first-year, team-based design courses represent a uniqueopportunity to address such disparities and providing early collaborative learning experiencessupports the success of students from underrepresented groups in engineering [10-13]. Whilelectures and readings may provide teams with basic tools for team and project management,these correlate team success with the creation of a high-quality final design [14]. Such tools mayinadvertently cue students to distribute work according to stereotypical social roles in the beliefthat by having team members “play to their strengths,” they are doing what is best for the team[15]. Such task distribution may limit new learning across
data obtained through amixed-methods approach. Results indicate that students’ attitudes toward teamwork andtheir perceptions of their own teamwork skills improved over the semester.IntroductionTeamwork is vital to engineers’ professional lives. Passow 2012 surveyed over 4000practicing engineers representing eleven different disciplines asking them to evaluatethe importance of the different ABET competencies in their careers [1]. Teamwork(ABET Outcome 5, formally ABET Outcome D) received the highest rating.Considering its importance to the field, team-based assignments, particularly semester-long design projects, are commonly employed in engineering curricula. Whileteamwork can be a rewarding experience, it can also be a source of anxiety and
City College of New York and her Doctorate degree at University of Florida in Environmental Engineering. She has over 10 years of experience developing international and national research experiences for STEM majors, as well as project management. American c Society for Engineering Education, 2020 Works in Progress: Integrating Information Literacy into a Multi- Disciplinary First-Year Engineering ProgramMotivationThis Work in Progress paper describes a pilot program of integrating a librarian-led guest lectureinto a first-year engineering program. While many first-year engineering programs historicallyhave provided students with a lecture-based
, andpromote critical thinking [2]. In the learning context of PBL, students develop authenticquestions for problems that are situated within real-world practices [3], which leads tomeaningful learning experiences [4].Competences, such as critical thinking and communication skills promoted by PBLmethodologies, are increasingly important for engineering practice. In the labor market it isexpected that engineers not only work in technical contexts, developing solutions that meetclients’ needs, but also perform their work through effective collaboration with others [5]. Inengineering schools, these competencies are usually taught in the design courses at the finalstages of the career (Capstone Course), which use project-based learning
atechnical report documenting results of the design process; 5) managing design projects, developproject timelines and negotiate individual responsibilities and accountability in the teamenvironment; 6) applying strategies of ideation to develop novel and innovative solutions; and 7)prototyping solutions for purposes of design, testing and communication. Grouping strategiesdiffer based on the project during the semester. There are three projects, two mini and one mainproject (capstone) in the course during the course of the semester. The mini project aims to helpstudents explore their college major more deeply, so, students are teamed with peers that sharethe same or similar majors. The capstone project is situated within an Engineering
-controlled Unit Operations experiments, and incorporating Design throughout the Chemical Engineering curricu- lum. She currently works as a freelance Engineering Education Consultant and Chemical Engineer. She is the Project Manager for NSF grant #1623105, IUSE/PFE:RED: FACETS: Formation of Accomplished Chemical Engineers for Transforming Society, for which she is advising and coordinating assessment.Dr. Abhaya K. Datye, University of New Mexico Abhaya Datye has been on the faculty at the University of New Mexico after receiving his PhD in Chem- ical Engineering at the University of Michigan in 1984. He is presently Chair of the department and Distinguished Regents Professor of Chemical & Biological Engineering. From
Paper ID #30242Algorithm for Consistent Grading in an Introduction to Engineering CourseProf. Joshua A Enszer, University of Delaware Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional
results and confounded datain the studies referenced above.The First-year Engineering ProgramThe Northeastern University College of Engineering, following a successful pilot in 2014,decided to adopt a “Cornerstone to Capstone” curriculum design for all incoming first-yearengineering students. The Cornerstone course incorporates hands-on, project-baseddesign work with computer programming. Previously taught in two separate first-yearcourses, the new Cornerstone course model blends programming and design in a way thatdemonstrates the intertwined nature of the two skills. The project-based Cornerstoneincludes occasional incongruent learning of course content. By highlighting the fact thatproblem-solving in engineering brings together groups of