contact hours with their instructor and access to the laboratory space.The Friday classes began with a quiz on the previous week’s material followed by an assortmentof activities like community building, working practice problems, open-ended project work, andgoing deeper with course concepts.Each quarter, weekly SI sessions led by peer mentors were offered to the SSP students. The twopeer mentors were selected from a group of students who participated in a pilot version of theSSP the previous year. SI sessions focused on both the engineering and math classes, providingtime for open-ended project work, specialized help on in-class problems, and access to additionalproblem sets. The session times varied each quarter but were strategically chosen to
toname two accomplishments after participating in a REU, the result was an increased level ofconfidence and an increased appreciation for research. These answers, as well as previouslycollected data, suggest a daily laboratory experience for undergraduate students is necessary fordevelopment of engineering identity and research self-efficacy [5]. Daily laboratory experience issomething the REU can provide since participants would be carrying out original research whileworking on their project each day. Since the REU gives engineering students experience in theircareer paths, it also gives them a taste of what graduate school would be like and has indirectlyled to an increase in positive attitude towards graduate school as well as graduate
wind energy, particularly in the characterization of fatigue and ultimate loads for floating offshore wind turbine concepts.Dr. Maija A. Benitz, Roger Williams University Dr. Maija Benitz is an Associate Professor of Engineering at Roger Williams University, where she has taught since 2017. Prior to joining RWU, she taught at the Evergreen State College in Olympia, WA, after completing her doctoral work jointly in the Multiphase Flow Laboratory and the Wind Energy Center at UMass Amherst.Dr. Lillian Clark Jeznach, Roger Williams University Dr. Lillian Jeznach is an Associate Professor of Engineering at Roger Williams University. She teaches the first year curriculum as well as upper-level courses related to
persistence and retention of low-income engineering transfer students.Dr. David A. Copp, University of California, Irvine David A. Copp received the B.S. degree in mechanical engineering from the University of Arizona and the M.S. and Ph.D. degrees in mechanical engineering from the University of California, Santa Barbara. He is currently an Assistant Professor of Teaching at the University of California, Irvine in the Department of Mechanical and Aerospace Engineering. Prior to joining UCI, he was a Senior Member of the Technical Staff at Sandia National Laboratories and an adjunct faculty member in Electrical and Computer Engi- neering at the University of New Mexico. His broad research interests include engineering
. T. Puente, and F. Torres, “Hands-on experiences of undergraduate students in Automatics and Robotics using a virtual and remote laboratory,” Comput. Educ., vol. 57, no. 4, pp. 2451–2461, 2011, doi: 10.1016/j.compedu.2011.07.003. [Accessed April 28, 2023].[3] C. S. Cheah, “Factors contributing to the difficulties in teaching and learning of computer programming: A literature review,” Contemp. Educ. Technol., vol. 12, no. 2, pp. 1–14, 2020, doi: 10.30935/cedtech/8247.[4] B. Bettin, M. Jarvie-Eggart, K. S. Steelman, and C. Wallace, “Preparing First-Year Engineering Students to Think About Code: A Guided Inquiry Approach,” IEEE Trans. Educ., vol. 65, no. 3, pp. 309–319, 2022, doi: 10.1109/TE.2021.3140051
program on GPA and retention," JEng Educ, vol. 93, (4), pp. 293-301, 2004.[25] Hasso Plattner Institute of Design, Stanford University, "The Wallet Project," Available:https://dschool.stanford.edu/resources/the-gift-giving-project.[26] K. Bieryla, "Design Sprint – Dorm Life Edition," 2024. Available:https://engineeringunleashed.com/card/4032.[27] NASA Jet Propulsion Laboratory, "Water Filtration Challenge," Available:https://www.jpl.nasa.gov/edu/teach/activity/water-filtration-challenge/.[28] J. Thomas, L. E. Boucheron and J. P. Houston, "Measuring self-efficacy in diverse first-yearengineering students exposed to entrepreneurial minded learning," in 2018 IEEE Frontiers inEducation Conference (FIE), 2018.[29] D. Dickey and C. Pearson, "Recency
. 11, Page 5294, vol. 11, no. 19, p. 5294, Sep. 2019, doi: 10.3390/SU11195294.[6] Y.-P. Cheng, C.-F. Lai, Y.-T. Chen, W.-S. Wang, Y.-M. Huang, and T.-T. Wu, “Enhancing student’s computational thinking skills with student-generated questions strategy in a game-based learning platform,” Comput Educ, vol. 200, p. 104794, 2023, doi: 10.1016/j.compedu.2023.104794.[7] S. Daniau, “The Transformative Potential of Role-Playing Games—: From Play Skills to Human Skills,” Simul Gaming, vol. 47, no. 4, pp. 423–444, Aug. 2016, doi: 10.1177/1046878116650765.[8] P. Chan, T. Van Gerven, J. L. Dubois, and K. Bernaerts, “Study of motivation and engagement for chemical laboratory safety training with VR serious game,” Saf Sci, vol
. Also, students had the opportunity to clarifydoubts about different engineering programs offered at the CoE, learn about typical tasksperformed by different engineering branches, learn about research laboratories, manufacturing,and service facilities; and use math and science concepts in the solution of engineeringproblems.A. Course DeliveryThe course was offered as one weekly meeting of fifty minutes for fifteen weeks per semester(1 credit hour). The topics covered in the course included: Introduction to Engineering; TeamBuilding in Engineering; The Engineering Design Process; Ethics in Engineering Design; andseven lectures, one on each of the academic departments in the CoE. Departments offeringmore than one undergraduate academic program
Paper ID #42473Growth of Student Awareness within a Discipline-Agnostic Introduction-to-EngineeringCourseDr. Gregory J. Mazzaro, The Citadel Dr. Mazzaro earned a Bachelor of Science in Electrical Engineering from Boston University in 2004, a Master of Science from the State University of New York at Binghamton in 2006, and a Ph.D. from North Carolina State University in 2009. From 2009 to 2013, he worked as an Electronics Engineer for the United States Army Research Laboratory in Adelphi, Maryland. For his technical research, Dr. Mazzaro studies the unintended behaviors of radio-frequency electronics illuminated by
University Dr. Carroll is an Associate Professor and the Civil Engineering Program Coordinator in Parks College of Engineering, Aviation and Technology at Saint Louis University. His experimental research interests focus on reinforced and prestressed concrete, while his educational research interests focus primarily on the use of experiential learning techniques.Dr. Michael A. Swartwout, Saint Louis University Dr. Swartwout is director of the Space Systems Research Laboratory. His research and teaching interests focus on systems engineering, design and CubeSat mission assurance.Dr. Kyle Mitchell, Saint Louis UniversityRaymond LeBeau, Saint Louis UniversityDr. Gary Bledsoe, Saint Louis UniversitySusheel Singh, Saint
using the Engineering Design Process (EDP)within the context of the accomplishments and mindset of Da Vinci. The course exploredengineering mechanics and design topics concurrent with applying physics topics in anengineering laboratory. A qualitative analysis was performed using a new reflective tool,PhotoVoice. The purpose of the assessment was to better understand the impact of the course onthe student vision, the operation of the course relative to what they have encountered in theireducational careers, and student-perceived learning outcomes. Analysis of student reflectionsrevealed themes of “Changed Perspectives,” “Engagement in the Classroom,” and“Brainstorming Benefits” when describing the impact of the course on their career visions
. Richards, “Curriculum Approaches in Language Teaching: Forward, Central, and Backward Design,” RELC J., vol. 44, no. 1, pp. 5–33, Apr. 2013, doi: 10.1177/0033688212473293.[10] J. Emory, “Understanding Backward Design to Strengthen Curricular Models,” Nurse Educ., vol. 39, no. 3, p. 122, Jun. 2014, doi: 10.1097/NNE.0000000000000034.[11] K. Y. Neiles and K. Arnett, “Backward Design of Chemistry Laboratories: A Primer,” J. Chem. Educ., vol. 98, no. 9, pp. 2829–2839, Sep. 2021, doi: 10.1021/acs.jchemed.1c00443.[12] K. M. Cooper, P. A. G. Soneral, and S. E. Brownell, “Define Your Goals Before You Design a CURE: A Call to Use Backward Design in Planning Course-Based Undergraduate Research Experiences,” J. Microbiol
teams in the chemical and natural gas engineering section of GEEN 1201, whichinvolved topics in water purification, solar water pumping, salinity treatment by reverse osmosis,and liquid-liquid extraction. For each project, essential mechanical units were provided and thestudents were tasked with developing and testing a prototype unit or in a laboratory setting.Because of the limited time allotted to the project during the semester (approximately 6 weeks),the instructor gave the specific problem definition to the students, rather than having the studentsperform their own problem definition based upon a more generic needs statement.The objective of the water purification project was to develop a prototype device for on-demandpurification of
Laboratories. Since 1993 he has been with Bucknell University where he is currently Professor of Electrical and Computer Engineering. His research interests include antenna array system design, signal processing, and medical ultrasound imaging. Dr. Kozick received a 2006 Best Paper Award from the IEEE Signal Processing Society and the Presidential Award for Teaching Excellence from Bucknell University in 1999.Christa Matlack, Bucknell University Christa Matlack serves as a Career Coach in the Center for Career Advancement at Bucknell University where her role is to empower undergraduate students to seek meaningful careers and to guide students through the career development process. In addition, Christa is a co-leader of
. Porter and M. Kilbridge, Eds., Cambridge, MA: MIT Laboratory of Architecture and Planning, 1978, pp. 551–660.[7] S. Dinham, “Research on Instruction in the Architecture Studio: Theoretical Conceptualizations, Research Problems, and Examples,” presented at the Annual Meeting of the Mid-America College Art Association, 1987.[8] NCTQ, “Classroom Management.” National Council on Teacher Quality, 2020. [Online]. Available: https://www.nctq.org/review/standard/Classroom-Management[9] B. M. Dewsbury, “Deep teaching in a college STEM classroom,” Cult. Stud. Sci. Educ., vol. 15, no. 1, pp. 169–191, Mar. 2020, doi: 10.1007/s11422-018-9891-z.[10] A. Thompson, B. Sattler, and J. Turns, “Understanding a studio environment: A complex
social skills are likely to vary widely among engineering students [2], there isa benefit to creating opportunities for students to develop and refine their skills. A potential idealenvironment for teaching and developing social skills is laboratory situations in which studentscollaborate as they work in teams [3, 4].Students are much more likely to experience positive growth in their social skills when thosethey seek support from when learning (e.g., faculty members, and mentors) integrate and modeleffective social skills in their interactions [5]. Thus, there is justification for researching thestudents’ awareness and understanding of the social skills modeled for them in their interactionswith their learning leaders. Specific to our research