project preparation course, and a capstone course in quality. The results also havemajor implications for lifelong learning for engineers and are compatible with the teachings ofothers such as Taylor, Deming, Senge, and a study by Ernst & Young.The objectives of this paper are to:1. Share executive survey results and findings2. Demonstrate that the spectrum of leadership can be modeled by Hayes’ ―Six Stages of Quality System Implementation‖ and parallel versions of it3. Demonstrate how the Six Stages of Quality System Implementation were used to redesign courses in the industrial and manufacturing engineering curriculum to strategically integrate lean, six sigma, statistical quality control, and quality tools.4. Show that there is
improve the process. An example of the cases is not provided here due tospace limitations. Page 13.737.8IE/IET faculty are aware of the need to cover service industry applications in theircourses. As previous investigations show (Summers, 2006), these efforts are usuallydependent on the individual faculty member and are not necessarily seen curriculum-wide. At the University of Dayton, our goal is to integrate service industry activities andexamples across the curriculum. From the very beginning of this project the approachwas as integrated as possible. Since the cases were developed for use in a wide variety ofclasses by a single faculty member, care was
AC 2012-4100: SUSTAINABLE INDUSTRIAL ENGINEERING MODULESProf. Victoria C. P. Chen, University of Texas, ArlingtonDr. K.J. Rogers, University of Texas, ArlingtonMrs. Andrea M. Graham, University of Texas, Arlington Industrial and Manufacturing Systems Engineering DepartmentJohn F. Dickson, University of Texas, Arlington John Dickson has a bachelor’s degree in mechanical engineering from Anna University, India, a master’s in engineering management from the University of Texas, Arlington, and is pursuing a Ph.D. in sustainable engineering at the University of Texas, Arlington.Prof. Stephen Mattingly, University of Texas, ArlingtonDr. Melanie L. Sattler, University of Texas, Arlington Melanie Sattler serves as an Associate
the undergraduate engineering curriculum, including which programs tend todiscuss ethics, where it falls in the curriculum, and how much attention it receives [38]–[40].This inconsistency in quantity and quality of engineering ethics education across engineeringprograms is problematic given the importance of ethical conduct as professionals. It is alsopredictable, however, given the generality of the Accreditation Board for Engineering andTechnology (ABET) student learning outcome (outcome four) associated with ethics: studentsshould have “an ability to recognize ethical and professional responsibilities in engineeringsituations and make informed judgments, which must consider the impact of engineeringsolutions in global, economic
AC 2012-5146: A METRIC-BASED, HANDS-ON QUALITY AND PRODUC-TIVITY IMPROVEMENT SIMULATION INVOLVING LEAN AND SIGMACONCEPTS FOR FIRST-YEAR ENGINEERING LAB STUDENTSDr. Yosef S. Allam, Embry-Riddle Aeronautical University, Daytona Beach Yosef Allam is an Assistant Professor in the Freshman Engineering Department at Embry-Riddle Aero- nautical University. He graduated from the Ohio State University with B.S. and M.S. degrees in industrial and systems engineering and a Ph.D. in engineering education. Allam’s interests are in spatial visualiza- tion, the use of learning management systems for large-sample educational research studies, curriculum development, and fulfilling the needs of an integrated, multi-disciplinary first
was better using functions like NPV (Net Present Value) or IRR (Internal Rate of Return). Screenshots are presented in Appendix 4.The homework was assigned throughout the 2 months, corresponding to the topics covered in thecourse. At the end of the semester, the student groups had to turn in their Purple Report whichrepresented an 80% complete project, complete a peer review of another group’s report, and turnin their final fully completed business plan as their final exam.Integrated Solution: Elements of their final project related to both this course and other coursesin their curriculum and the ability to use these in a practical and integrated approach. Importantelements were: • Safety –They had to analyze employee safety
Page 23.1251.1 c American Society for Engineering Education, 2013 To Be Green Or Not To Be Green? Ethical Tools for Sustainability EngineeringAbstractEngineers are increasingly being asked to design products and process that reduce the overallimpact society has on the environment as more people realize the rising need to developsustainable resources and to be responsible when using existing resources. In order to adequatelyprepare students to enter this ever increasing demand for sustainable engineering, students needto have an understanding of the technical needs of society as well as the human component indesign, be it the use of local resources, the lack of surplus
a method of teaching that integrates community service into an academiccourse through applied learning to enrich the educational experience of students and meet theneeds of the community. In this paper, we describe the integration of service-learning into anundergraduate industrial engineering course.Over the past three years, students in the course have worked with four community partners tocomplete service-learning projects. The community partners have included a high school,community library, local farm, and an assistive technology center. Students worked directly withcommunity partners to improve operations and ergonomics within their facilities. Through theprojects, students gained a deeper understand of the course content, as well as
simulators for labs and healthcare providers together with integrated Logistics support systems for Advanced Cardiac Life Support. One of his current interests is in the area of manufacturing systems for rapid product design and development in international production. An extension of this work is the current effort that established the UTPA Rapid Response Manufactur- ing Center in a consortium of academic institutions, economic development corporations, industry, local, state, and federal governments. This initiative is an integral component of the North American Advanced Manufacturing and Research Initiative (NAAMREI). In addition, he has served and continues to serve in leadership positions in technology based economic
project – at school, at work, at home, etc. The purpose of this exercise isto establish common ground and relevance around the topic of project management between theworkshop facilitator and the students. This is re-iterated in the presentation slide as: “We haveshared context.” In other words, we are on this project management journey together.This brief introduction is followed by a ten-minute mini-lecture that shares fundamental projectmanagement concepts utilizing the project management body of knowledge (PMBOK, an ANSIstandard)[6]. This reference integrates industry and academic sources, which further builds on,and integrates, the relevance of practice and the use of standards within practice. Project
’),could encourage them to view IE as an approachable field.Reflections from the IISE definition - IISE defines Industrial and Systems Engineering as “Adiscipline concerned with the design, improvement and installation of integrated systems ofpeople, materials, information, equipment and energy. It draws upon specialized knowledge andskill in the mathematical, physical, and social sciences together with the principles and methodsof engineering analysis and design, to specify, predict, and evaluate the results to be obtainedfrom such systems.” Per this definition of IE, this activity addresses the idea of designing asystem consisting of materials and people, improving the system to make it more efficient, andincorporating methods of engineering
. L., Olsen, P. E., Nwogbaga, A. P., and S. Stotts, "Integrative approach for a transformative freshman-level STEM curriculum," Journal of College Teaching and Learning, vol. 13, 2016.11. Wilson, Z. S., Holmes, L., Sylvain, M., Batiste, L., Johnson, M., McGuire, S., Pang, S. and I. Warner. "Hierarchical mentoring: A transformative strategy for improving diversity and retention in undergraduate STEM disciplines," Journal of Science Education and Technology, vol. 21, p.p. 148-156, 2012.12. Gilmer, T. "An understanding of the improved grades, retention and graduation rates of STEM majors at the Academic Investment in Math and Science (AIMS) Program of Bowling Green State University (BGSU)," Journal of STEM Education, vol. 8
Paper ID #7894A proposal for using problem posing to connect learning of basic theory withengineering designDr. Richard L Marcellus, Northern Illinois University Richard Marcellus is an Associate Professor in the Industrial and Systems Engineering Department at Northern Illinois University. His current research interest is definition and performance evaluation of statistical process control policies. He has taught numerous courses in applied probability, including stochastic operations research, reliability engineering, queueing methods, dynamic programming, and quality control
constructed with varying amounts of variability in the height,width and depth dimensions facilitating different outcomes. Assessment of student performanceand perceptions (behavior and attitudes) from a small-scale (initial) pilot study will be measured,evaluated and discussed.IntroductionMontgomery states that “determining the capability of the measurement system is an importantaspect of many quality and process improvement activities.”1 Quality is integral component ofmost organizations and is a primary method in which organizations compete.2 The Society ofManufacturing Engineering (SME) has repeatedly identified quality as an important competencygap in the field of manufacturing.3,4This paper presents a method to address the quality competency gap