of physics,chemistry, math, and computer science. This shortage have an impact on the quality of STEMeducation because schools have to accept teachers with less qualifications [2]. This discouragesyoung students from pursuing careers in Science, Technology, Engineering, and Mathematicsupon entering college due to limited comprehension and exposure to these subjects [4]. Toaddress this critical need, XXX University in partnership with YYY College and the 6-12 schoolsystem designed/developed a comprehensive five week Summer Educational Internship program.This program targets rising college sophomores majoring in Science, Mathematics, andEngineering Technology to prepare them for teaching students in grades 6-12. Over a 5 weekperiod the
foundational understanding of STEM concepts, career options, and critical thinkinglearning skills.To address the aforementioned issues Savannah State University and Savannah TechnicalCollege in collaboration with NASA developed four week Summer Educational InternshipProgram for Math and Engineering Technology rising sophomore students to prepare them fortwo week teaching experience with students in grades 6-12. Fifteen (12 from Savannah StateUniversity and 3 from Savannah Technical College) students were selected to participate in theSummer Educational Internship Program (SEIP) and was offered a stipend of $1000. Severalinstructional models were explored for teaching mathematics and engineering at grades 6-12levels. Summer educational internship
education through: awareness among students of the importance of STEM careers withspecial emphasis on teaching careers, improving curriculum which will include STEMpedagogies and learning materials, and establishing more rigorous STEM standards viaexpanding requirements for STEM courses, more testing and assessment.5, 6 The backbone toincrease the STEM graduates is to increase the high quality STEM teachers.In 2015, the National Science Foundation (NSF) awarded XXX University the Robert NoyceScholarship program grant to foster teaching career paths for middle and high school teachers tomeet the demand of STEM teachers in the Savannah Chatham County Public School System(SCCPSS). The grant offers various initiatives to attract mathematics and
professor in the Department of Biomedical and Chemical Engineering and the Director of Chemical Engineering Graduate Program. Dr. Ren received an Early Career Translational Research Award in Biomedical Engineering from the Wallace H. Coulter Foundation in 2009 and a NSF CAREER award in 2011. He was named the College Technology Educator of the Year by the Technology Alliance of Central New York in 2010. Dr. Ren is also a recipient of the Faculty Excellence Award from the School of Engineering and Computer Science at Syracuse University. Dr. Ren currently has 44 journal publications with over 2000 citations (h-index 24), 7 issued/pending patents and research supports from NSF, EPA, Wallace H. Coulter Foundation, Alfred
coursesmainly. But the resources will be used in more course work needs for both engineering technologyand computer science departments. More students are being interested and want to work in theSCADA lab/center and proposing new research ideas. This year two of the students applied toEURECA’s FAST project to get summer funds in order to work in the center.References[1] Scheffer, E., Wibberley, D., and Beets, N. “What the future holds for SCADA systems and process automation”, Elektron, 19(7), July 2002, pp. 40-42. 2.[2] Velankar, A. and Mehta, A. “Latest trends in SCADA for process automation”, Proc. National Conference on Industrial Automation and Intelligent Systems 2002, Jan. 2002, pp. 9-11.[3] Control Engineering salary and career survey
Paper ID #29453The Impact Detector Project: Mechanical and electrical worlds collideDr. Dale H. Litwhiler, Pennsylvania State University, Berks Campus Dale H. Litwhiler is an Associate Professor at Penn State, Berks Campus in Reading, PA. He received his B.S. from Penn State University, M.S. from Syracuse University, and Ph.D. from Lehigh University all in electrical engineering. Prior to beginning his academic career, he worked with IBM Federal Systems and Lockheed Martin Commercial Space Systems as a hardware and software design engineer. He is also a registered professional engineer and an instrument-rated private pilot
improvements. Students get realistic design and applicationopportunities and experience that lead to no shortage of the best job offers, giving their careers agreat start.Electrical Demand ChallengeElectrical demand is a means for public utilities to charge customers more fairly for their use ofthe utilities’ infrastructure. Utilities plan and build their electrical distribution systems to belarge enough to provide enough power to meet the demands of their customers. The more that autility expects its customers to demand, the larger must be the utility’s investment in equipment.Equipment has a capital cost and a maintenance cost. To help meet these costs, most publicutilities have demand charges in their billing structure for commercial and industrial
, Behrend College Stephen Strom is a lecturer in the Electrical and Computer Engineering Technology department of Penn State Behrend, and holds a B.S. in electrical engineering from Carnegie Mellon University. His career includes over thirty years experience in designing and programming embedded systems and has multiple patents for both hardware designs and software algorithms c American Society for Engineering Education, 2020 Programmable System-On-Chip (PSoC) Usage in Embedded Programming CoursesAbstractPart of the requirements for an Electrical and Computer Engineering Technology (ECET) programincludes the ability for students to design and implement
school year.The current LUSE approach to engineering education consists of a traditional lecture/laboratoryresidential-based program conducted at the campus of LU in Lynchburg, Virginia. Students in theprogram have the option of taking their general education courses through LU Online to help provideflexibility in their scheduling. Continuing with the LU founder's vision, LUSE is committed to an ethicalbased philosophy producing men and women with the values, knowledge, and skills necessary to impacttomorrow's technology-related disciplines. Students have access to modern facilities and technology andqualified faculty seek to know their students personally and to provide them with opportunities foreducation, research, and a professional career
over their summer experience are at the foundation of the scientific methodand discovery and more importantly invaluable in their holistic engineering education. Theylearned to understand experimental protocol (and to revise it as needed) and to use and revise newscientific equipment; these skills are applicable to life beyond university in industry, academe orconsultancy. Their design and application of new data capture technologies and the significant dataanalysis and interpretation associated with real world investigations will serve them well in theirremaining years as students and their careers beyond. During this research, the student teamworked independently, provided regular communications of status and progress and learned howexciting
example, the outcomes of this study created several lab activities forthe students. During their research, students get to see firsthand the relative merits of the projectand get to use some of the new technologies one-on-one.Instrumentation and energy knowledge and projects are important to prepare students to becompetitive for careers in the growing fields of instrumentation, automation & control, energy-related engineering, science, and technology. Preliminary projections from the Bureau of LaborStatistics state that the number of expected energy related green jobs is expected to increase by11% by 2016, and most of it in environmental or energy-related sectors [23-24] . Edgar Dale’scone of learning shows that participating in discussions
securingviable new international markets including opportunities in MENA. The organization hasassisted American investors to solve critical development challenges and provide financialservices, political risk insurance, and support for private equity investment funds. United Statescorporations can obtain cross-border deals that catalyze earnings and profits, stimulate jobcreation, careers, and growth opportunities to obtain important concessions for investments inMENA. To date, OPIC invested in projects that reached an estimated $76 billion in United Statesexports and supported more than 278,000 American jobs both at home and abroad (OPIC, 2015).In 2011, the United States government addressed some concerns for deeper economic integrationand global